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Overview

We study the mathematical principles and basic numerical tools for optimal control

® Understanding of optimal control

® Examples from chemical systems

® (Catchy image from the internet)

The approach is general, with application domains in many (bio)-chemical systems
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Process control and automation at Aalto University

Francesco Corona
~~ Professor of process control and automation
® Once and future (on going) chem eng

® Camouflaged as computer scientist

Research and teaching about computational and inferential thinking of process systems

~> Automatic control and machine learning

® Three doctoral students
® Two master’s student

Formal methods from automatic control, statistics, and optimisation, plus applications

CHEM-E7225 Overview (cont.)
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Optimal control studies the mathematics in the optimisation of dynamical systems

® Numerical optimisation and system theory and numerical simulation

We start by setting the basic preliminaries associated with these two fields
~~ Dynamic modelling and numerical simulations, state-space form

~» Numerical optimisation with Newton-type methods

These two fields are combined to study the two flavours of optimal control
~~ Discrete and continuous-time optimal control

Direct- and indirect methods, and the Hamilton-Jacobi-Bellman equation

The objective is to provide some practical introduction to optimal control
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Trajectory

We study practical optimisation of dynamical systems, the basics of dynamic optimisation

I Control variables and disturbances

Inputs Outputs

O Measurement variables, the data
———— > System

~» The system evolves in time

~ (System/model/process)

Mathematical optimisation refers to the problem of determining the best, or optimal,
solution to some problem, a definition of optimality, given a set of possible decisions

%

~~ Decision variables
~> Objective function

~+ Constraint functions

Trajectory | System dynamics

We understand dynamic systems as processes that are evolving in time and that can
be represented using states that allow to determine the future behaviour of the system

I/O Controls u, outputs y System
S State variables z u(t) m(t) — f (.T(t), u(t), t|01:) y(t)
y(8) = g (z(1), u(?), t|0y)

P Parameters 0z 4

The dynamics of the state vars are represented by some nonlinear function f
® Function f returns z(t) at time ¢, given z(¢), u(t), and ¢

® Function f is parameterised, the vector 0,

How the state vars are transformed into measurements, nonlinear function g
® Function g returns y(t) at time ¢, given z(t), u(t), and ¢

® Function g is parameterised, the vector 6,
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System
I/O Inputs u, outputs y u(t) 2(t) = f (2(0), u(t), t[02) y(t)
J4 . N YT € ~Q —_— S ——————————————
S Std‘t(, val 1(1],)](,b xr y(t) =y (:L‘(t), /U,(t), t|6y)

Functions f often from a process modelling effort: Mass/energy/momentum balances

[Stuff in] — [Stuff out] 4+ [Stuff generated/consumed] = [Stuff accumulated]

/ [\ J/

Farut) s

Functions g often determined by the automation system: Sensors and instruments

Knowledge of the initial state z(tp) and of the control trajectory w(t) over some time
interval such that t € [tp, T'] allows to determine the state trajectory z(t) for ¢t € [to, T']

® The system model with certain evolution is of the deterministic kind

® Stochastic models describe evolutions that are known statistically

T Trajectory | System dynamics (cont.)
System
u(®) | #() = (2(),u(t), t0:) | (D)

y(t) = g (2(t), u(t), t[0y)

One fundamental element of dynamical systems is represented by state z(t) at time ¢
® The state space & is the set of all possible values of the state
® It can be continuous, like the usual Rz or some manifold
® It can be a discrete countable set such that |X| = Ny

® It can be hybrid, with continuous and discrete states

The other main element of dynamical systems is represented by controls u(t) at time ¢
® The control/action space U is the set of all possible controls
® It can be continuous, like the usual R« or some manifold
® It can be a discrete countable set such that [U| = Ny

® Tt can be hybrid, with continuous and discrete actions
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I/O Inputs u, outputs y

S State variables z

System

u(t)

#(t) = f (2(¢), u(t), t]0z)
y(t) = g (2(t), u(t), t0y)

y(t)

The dynamical system can be controlled by a suitable choice of inputs denoted controls

® The (sequence of) controls should be chosen optimally, in some sense

® The chosen controls mus

t satisfy certain constraints

This course is about methods and solutions to determine the optimal control inputs

Trajectory (cont.)
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In general, function f and g may change in time (or, f and g will change with time t)

® Typical of a process operated under varying conditions or subjected to ageing

® We will not discuss such processes explicitly, focus on time-invariant systems

u(t)

_—

System
a(t) = f (a(t), u(t), }10:)
y(t) = g (a(t), u(t), }10,)

y(t)

—_—

Sometimes functions f and g may be approximated to be linear functions in z and w

® Typical of a process model linearised around some steady-state (z*, u*)

® Not discussed explicitly neither, focus on nonlinear systems

System

u(t)

#(t) = A(t)2(t) + B(t)u(?)
F(@rut]6,)
y(t) = C(B)(t) + D(B)u(t)

g(zzuytley)

y(¢)
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Chemical kinetics are concerned with understanding the evolution of reaction systems

® The system is specified by a set of coupled chemical reactions

The chemical kinetics induce an ordinary differential equation, a dynamical system

Trajectory | System dynamics (cont.)
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The Lotka-Volterra system is usually
used to capture interactions between
A oo |/ competing chemical species
A+B 5 9B ey
ks (1) A — 24
B % 0 N
A+B - 2B
k3 (t
Bl

—=L%P :
/

Assuming to be able directly manipulate the rate at which component B is removed,

d[A](t
a | [ RA - kGBI
ABI) | LkelAI(OIBIO) — ka(DIBI(D)
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® Control variables u(t) = ui(t) = k3(t)

dt

.

Trajectory | System dynamics (cont.)

ki [A](8) — k2[A]($)[BI(2)

k2[A(O[B](t) — ks()[B](1) |

#(t)
® State variables z(t) = (z1(t), z2(t)) = ([A](%), [B](t))

® Parameters 0, = (ki, k2)

20

Concentrations
-
o
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40

Time

[AI)
[BI(t)
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Fa(t),u(1)]6,)

10 1
8
6

0 5

2 3
[AIH)

The evolution, for an initial condition z(0) = z9 and sequence of inputs «(0 ~ 1) [
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Trajectory | System dynamics (cont.)

o

B+ X,
2X; + X,

X1

X1

X+ C

33X,
D

QO

I

.

The Brusellator is a theoretical model
for certain auto-catalytic reactions

A ox
B+X1 2 Xo4cC
2X1 + Xo 233Xy
x1 4 D

The reaction components (X1, X2) are
a pair of intermediate state variables

Assuming that the concentration species A and B (and C and D) can be manipulated

d[X1](¢)
dt
d[X2](1)
dt

a(t) — b(1)[X1](t) + [X1]? (1) [X2] () — [X1](2)

b(t)[Xa](t) — [X1]?(1)[X2](2)
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d[X1](t)
i - a(t) — b(¢)[X1](t) + [X1]?(¢) [ X2](t) — [X1](2)
d[X2](t) | b(4)[X1](t) — [X1]?(¢)[X2](t) J
—% - F@(t),u(t)]02)

& (1)
® State variables z(t) = (z1(t), z2(t)) = ([X1](¢), [X2](1))
® Control variables u(t) = (u1(t), u2(t)) = (a(t), b(t))
® Parameters 0, = (k1, k2, k3, ka)

3 3
—X11e)
A
25, 25
2 2} 2 Q
S
5 = =
g1s | gs
o
=
31 1
05 05
o R oL
0 50 100 150 200 250 300 0 05 1 1.5 2
Time [X2](t)

The evolution, for an initial condition z(0) = zp and sequence of inputs u(0 ~» T') [

T Trajectory | System dynamics (cont.)

2023

We mainly focus on deterministic systems with continuous state and control spaces

® We will make a short digression to discuss discrete state- and action-spaces

More importantly, we are interested in solutions to be implemented on a computer

® We consider digitally controlled sampled-data system, in discrete-time

System

up, Tipy1 = far (@, uk, k|0z) Yk
Yk = gAt (T, ug, k[0y)

The evolution of discrete-time systems takes values on a predefined time grid
® We will often replace the continuous time variable ¢t € R>q

® Instead, we will use the discrete index variable k € Ny
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Trajectory | System dynamics (cont.)

Overview of the main (useful for us) classes of dynamical system models
® Continuous- and discrete-control
® Continuous- and discrete-state
® Continuous- and discrete-time

Important properties: Stability, controllability (and observability)

Existence and uniqueness of the solution to initial value problems

® Picard-Lindel6f and local existence and uniqueness

Numerical simulation (or, integration) of initial value problems
® Zero-order hold of the control and the solution map

® Explicit integration (Euler and Runge-Kutta)

Coding/simulating interesting dynamical system

~ Assignment |

Trajectory | Optimisation

Mathematical optimisation refers to the task of finding the best solution z* to a prob-
lem, an optimality definition for some function f (z), in a set of feasible decisions z

min  f (z) (Objective function)
z€RN

subject to g (z) =0 (Equality constraints)
h(z) >0 (Inequality constraints)

IQZQ;%JF:[

We mainly consider finite-dimensional op- s S x> 1
timisation tasks with smooth functions '

w [:RN = R, with f € €2 (RV) ﬁ /\N .
v g: RN = RNy, with g € C2 (RV) \&J

v b RN — RN with h € C? (RY)

Continuity of the search domain and smoothness of the objective and constraint func-
tions allow the use derivative-based approaches, applications of the Newton’s method
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min  zZ + 23 (Objective function)
ze€RN
subject to x1 —1 =0 (Equality constraints)

2o —1—2z2 >0 (Inequality constraints)
Ty > 23+ 1
~ f:R? = R, with f € C? (RQ)
~ g:R? > R, with g € C? (7?,2)
~ h:R? - R, with h € C? (R?)

x> 1

The set of feasible decisions

Q={z € R?h(z)>0,g(z)=0}

The minimiser z* (here, point e)

TR Trajectory | Optimisation (cont.)

2023

Newton- and Newton-type methods are numerical techniques for root-finding

Consider some vector-valued function F : RN — RN

fi(z,22,...,2N)

fo(z1,22,...,2N)
F(z) =

N (1, 22,...,2N)

Newton methods are used to find the zeros of F

® Points 2* € RY where F (z) =0

f(zf, oz, 2y 0

e fa(zxs,. .. zy 0
F X = . =

N(mf,xﬁ",...,m}'\}) 0

Many optimisation problems can be formulated as root-finding problems

~~ Newton’s methods are the basis for their numerical solution
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Trajectory | Optimisation (cont.)

min  f(z) (Objective function)
TeRN

subject to g (z) =0 (Equality constraints)
h(z) >0 (Inequality constraints)

The constraint set Q C RY is specified in terms of equality and inequality constraints

We can take into account this structure to obtain a collection of optimality conditions
® These conditions involve a set of auxiliary variables, A € R and u € RNs

® The auxiliary variables are denoted as Lagrange multipliers

Ny Np,
Lz, \p)=F (@)= D tnggny () = > Anyhny, (2)

ng:1 nhzl

The theory of Lagrange multipliers facilitates the characterisation of optimal solutions
® The Lagrange function £ and the primal and dual formulation
® The Karhush-Kuhn-Tucker (KKT) optimality conditions

Trajectory | Optimisation (cont.)

Overview of the main (useful for us) classes of mathematical programming problems
® Nonlinear programming
® Quadratic programs
® (Linear programs)

The critical boundary in optimisation is between convex and non-convex programs

Newton- and Newton-type root-finding methods and unconstrained optimisation

® Generalities, optimality conditions, and convergence

Existence and optimality conditions of the solution to a nonlinear program
® Equality constrained optimisation problems

® Inequality constrained optimisation

Numerical algorithms and coding

~ Assignment II
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Optimal state-feedback control combines notions of optimisation and system dynamics
l Disturbances
Controls Data
System A general structure, each block can be
treated using different technologies
® First-principles (physics)
® Empirical (data-derived)
State estimation
It scales (it can be solved) reasonably
well with the process size (complexity)
Feedback control
P— Trajectory | Dynamic optimisation (cont.)
2023
System ~» A (known) dynamical system
u(t) |z(t) = f (z(t), u(t)|0z) y(t) ~» A formal control objective
y(t) = Iz(t) ~> A set of constraints
Find the best control function u(0 ~» T')

that optimally achieves the objective,

Controller
while satisfying the constraints

u(t) = (2(1))

path constraints h(x, u) > 0
4

i terminal
i constraint r(x(T)) > 0

initial value
X0 :
controls u(t) u_,ﬂ
T

t

states x(t)

0
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T
min E (z(T)) —|—/ L(z(t),u(t)) dt
—— 0

z(0~1T)
u(0~~T) Mayer term h ~ d
Lagrange term
Bolz;rterm
subject to z(0) —ZTo =0, t =0 (fixed initial state)

z(t) — f (z(t),u(t)) =0, t €[0,T] (dynamics)
h(z(t),u(t)) >0, t €0, T] (path constraints)
r(z(T)) >0, t =T (terminal constraints)

Continuous-time optimal control problem, it is an co-dimensional optimisation

® The decision variables are functions of time, u(0 ~» T') and z(0 ~ T)

Bolza objective functions are the sum of two terms, a Lagrange and a Mayer term

® The integral cost L (z(t), u(t)) over [0, T] and a terminal cost E (z(T))

— Trajectory | Dynamic optimisation (cont.)

2023

. T
I(rginT) E (z(T)) —|—/0 L(z(t),u(t)) dt

u(0~T) Mayer term h v
Lagrange term

/

N J

~
Bolza term

subject to z(0) —Zo =0, t =0 (fixed initial state)

z(t) — f (z(t),u(t)) =0, t €0, T] (dynamics)
h(z(t),u(t)) >0, t €0, T] (path constraints)
r(z(T)) >0, t =T (terminal constraints)

Three main classes of approaches to solve continuous-time optimal control problems
® Principle of optimality (the Hamilton-Jacobi-Bellman equation)

® Calculus of variations (the Pontryagin maximum principle)

® Discretise-then-optimise, then nonlinear programming



CHEM-E7225
2023

CHEM-E7225
2023

Trajectory | Dynamic optimisation (cont.)

Discrete-time optimal control

System
U x = Tk, Uk |0 .
i s J;At (2, w|6z) Yk ~» A (known) dynamical system
= Iz
Yk K ~ A formal control objective
Controller ~ A set of constraints

up = AL (Tk)

Find the best control sequence wug, u1, ..., ux_1 that optimally achieves the objective
K—1
s min B (o) + Y L, u)
UQY, UL e UK 1] k=0

subject to g —ZTo =0, k= (fixed initial state)
Te4+1 — fae (xg,u) =0, k=0,1,...,K —1 (dynamics)
h (zy, ug) > 0, k=0,1,...,K —1 (path constraints)
r(zg) >0, = K (terminal constraints)

Trajectory | Dynamic optimisation (cont.)

The formulation of the discrete-time optimal control is a general nonlinear program

K—1
L. nin E(zx) + Z L (zy, ug)
uo O’Ujl 1’1;,KK 1 H/_/ k=0 H_/
TR Terminal cost Stage cost
subject to g —Zo =0, k= (fixed initial state)
Tp4+1 — fae (g, ux) =0, k=0,...,K—1 (dynamics)
h (zy, ug) > 0, k=0,...,K—1 (path constraints)
r(zx) >0, = K (terminal constraints)

The number of decision variables is typically very large, (K x RN#) x ((K —1) x RNu)
® Optimisation can be approached with solvers for generic nonlinear programs

® The problem has however a sparsity structure that can be exploited

This discrete problem is solved by using optimisation and integration simultaneously
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Trajectory | Dynamic optimisation (cont.)

In the simultanous approach, both control and state variables are decision variables

It is possible to eliminate nearly all the state variables, by using the dynamics

Zo(x0) = @0
71 (0, u0) = fa¢ (Zo(x0), uo)
Z2(x0, uo, u1) = fae (%1 (20, vo), 1)

§k+l($07 U, Ur, -+, Ug—1, uk) - fAt ($~k($0, UQy - -y uk*l)a Uk)
We obtain the reduced formulation,
K—1
min E Tk (z0,u0,u1, .., ux—1)) + > L(Tp (20, u0, 1, ..., ux—1), )
UQ UL 5eees K — 1 k=0

subject to xp —Tp =0
h(xk,uk) Z 0
r(zx) <0

Many less decision variables (N; + (K — 1) Ny, ), but the sparsity structure is disrupted

Trajectory | Dynamic optimisation (cont.)

Direct optimal control methods transcribe the original infinite-dimensional optimisation
problem into a finite-dimensional one to be solved by nonlinear programming

® Define a finite-dimensional parameterisation of the control trajectory

T

......................
................................

......

......

The idea is to discretise the controls u(¢) on afixed grid 0=t < t1 < --- < Tg =T

® Controls are parameterised by polynomials (often, piecewise constant functions)

~ Assignment I11
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-~ prediction horizon —»:
-~ past — control horizon —P"I '
H state constraint H
------------------------- oo oo STRCEITE
x(t) /" predicted . : ,
state trajectory \l\‘“ :
current state . T '
“ - : g
i ______ optimized :
__|_|__|_ : i controls . 5
past controls Wt T ' u(t) '____i __________________________________ '-
t totd St T to+Tp
k+N-—1
min Z L(xn, un) + Ly (z14-N)
Uhr-e o Uk N—1 ek At each time step, solve the finite-
horizon optimal control and then appl
S-t' xn-l-l :fAt(mnaunawn|9?L’)7 “ p . . ppy
vnelk,k+N] only the first optimal control action
T, €EX, up €U,
O (zp, 28+ n) = 0,
P— Trajectory | Model predictive control (cont.)
2023

Wastewater Treatment

Reference
Data
Controls Crop Growth
Reference — j>>>7j
Data
Controls
Controller (| @ @ @ @ @
O Controller
® State vars
Qft Qe <” Q‘E” QE
® Controls @ @
® Disturbances %) @ 0
QIN 0 0 0

® Measurements o oooo °o° oo

Neto et al. ECC (2020), IFAC
(2020), ADCHEM (2021),
JPC (2022), DYCOPS (2022)

3)

Kra® Kra®

Ky m‘XD K,,nmXD

s

—@o
_%].

’_1; aV

Qa

Qr
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Trajectory | Model predictive control (cont.)

ew(t) “uw(t)

ry (1) 5—>O—[—0O | o WwT Yu(t)
~~ Hamilton-Jacobi-Bellman ‘LCTRL < *u(®) EST J
|
® On AGR
Ol
— ines Ta : e, (t u,(t
Nonlinear programming ra(t) 0O (t) { O (t) AGR > ya(t)
® On WWT
w1
CTRL [« *olt) EST 'J4_

A guest seminar on model predictive control of wastewater treatment plants for reuse

® Online optimal control for tracking, disturbance rejection, and zero offset control

® Date yet to be set (last or last-but-one week)

Trajectory | Moving horizon estimation

® The state variables of the system are often not measured

® Measurements are

System

The variables that are technologically /economically measurable are a small subset

corrupted by noise u(t) |(t) = f (z(t), u(t), d(t)]0z) | y(t)

® The dynamics are

y(t) = g (z(t), u(t)|0y)

not fully known

® Disturbances drive

the evolution

State estimator

State estimation for use in control in the presence of sensor and model uncertainty

® (Classic stochastic approaches, the Kalman and the extended Kalman filter

K—-1

(||m(0) - zon;_l(o)) + (Z w1 — fae (o, wp, dil62) 17
k=0

We discuss a deterministic counterpart for state estimation, only based on optimisation

)

K
+ <Z lyk — g (zk, wk, di|0y) ||%3—1> ;o ostozp € X u €U

k=0
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Fia Tl
k k
T, A 28 B X C
- k
4t p bg oo 24 HBp
24 '8 p
@ Fot | I Cp T A non-isothermal CSTR (Van de Vusse)
/, ® Nonlinear and non-minimum phase
FT

dpa A
o (Pi(n) - PA) - (kAB(T)PA + kAD(T)P,24>
dpp
5 = st kap(T)pa — kpc(T)pp

T (T T)+kWAT(T Ty - (k; (T)paAHup + k AHpo + kap(T)p2 AH )

= (T oc, v, (T o, \Faz paAHsp + kpocppAHpe + kap(T)pyAHac
dT 1 kw Ar
—l_ Q+ (1 -1y

dt mg CpK mi CpK
Another guest seminar, on the moving horizon estimator (Date to be set)

CHEM-E7225 Overview
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CHEM-E7225 is a set of lectures (approx. 36h) and exercises (approx. 12h)

W02 Dynamical systems and simulation
L Intro
L Dynamical systems and simulation
L Dynamical systems and simulation
E Exercise (set-up coding environment)
‘Wo3 Optimisation
E+L Root-finding with Newton’s methods
L Nonlinear programming
L Nonlinear programming
E+L Exercise (Simulation)
Wo4 Optimisation
E+L Nonlinear programming
L Nonlinear programming
L Discrete-time optimal control
E Exercise (Root-finding/Optimisation)
Wo5 Dynamic optimisation
E+L Discrete-time optimal control
L Dynamic programming
L Dynamic programming
E Exercise (Optimisation)
‘Wo6 Topic
E+L Linear-quadratic and infinite-horizon problems
L Seminar (Model-predictive control)
L The Hamilton-Jacobi-Bellman equation
E Exercise (Discrete-time optimal control)
wo7 Topic
E4+L Continuous-time optimal control
L Seminar (Moving-horizon estimation)
L Continuous-time optimal control
E Exercise (Continuous-time optimal control)

Lectures/exercise schedule will be modified to accommodate the class needs
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To pass E7225 you must return all the exercises (80%) and participate (20%)

Exercises (80%)
® One (1) written report with your solutions
® Include your results and your code
® Include high-quality diagrams
® Discuss your solution/code
~ By FEB 28, 23:59:59
Upload a (1) single (1) file, only use PDFs!

Participation (20%)
® Engage with the course activities
® Comment on the lecture notes

® Find and report typos/bugs

We encourage you to collaborate in figuring out answers and help others solve the
problems, yet we ask you to submit your work individually and to explicitly acknowledge
those with whom you collaborated. We are assuming that you take the responsibility to
make sure you personally understand the solution to work arising from collaboration

11f you have multiple files, merge them. If you use MSWord or else, save as PDF.



