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Dynamical
models

Continnonstine We focus on deterministic differential equation models of dynamical systems, in time

Discrete-time

® All numerical simulation methods executed on a computer discretise time

We highlight some relevant properties of continuos-time systems

® How to convert them to discrete-time systems

Continuous-time systems are often described by ordinary differential equations (ODE)

~ Other common forms of ODEs (delayed ODE)
~~ Differential-algebraic equations (DAE)
~ Partial differential equations (PDE)

P— Continuous-time models (cont.)
2023

We describe controlled dynamical systems in continuous-time with a first-order ODE

2(t) = f (¢, 2(1), u(t)|0)

Continuous-time ~ x(t) € RN=
S Nonlinear time-varying systems = u(t) € RN
s 0y € RNow
u(t) &(t) = f (¢, z(t), u(t)|0s) y(1) - teR
Tyt = g (to(0), u(b)]6,)
~ y(t) € RNy
0, € RV

Function f is a general map from time ¢, state z(¢), controls «w(¢) and parameters 6,
® f:[0, T] x RN+ x RNu s RNz to the rate of change of the state

® Because t is an explicit argument, function f is time-varying

xl(t) fl (xl(t)a xQ(t)v R me(t)v ul(t)7 UQ(t), SRR ’U,Nu(t), t|9m)
22(1) fo(z1(t), z2(t), ..., zn, (1), wr(t), ua(t),...,un, (t),t|0z)

ziv, (1) o (21 (), 22(0),s oy, (), wn (8), uz (), -, une, (£), £]02)



J— Continuous-time models (cont.)
2023

S 21 () fi(za(t), 22(t), .., 2N, (1), wa (L), ua(t), ..., un, (t), t|0)
Discrete-time Z2(1) fa(z1(t), z2(t), ..., zn, (t), ur(t), u2(t),. .., un, (), t|0z)
zp, (t) N, (@1(t), z2(t),. .., 2N, (8), w1 (t), u2(t), ..., un, (1), t|0z)
N— -~ N ~"~
() flz(t),u(t),t10z)

We are interested in the conditions under which the differential equation has a solution

® Given a fixed initial value z(0) for the state, and controls u(t) with ¢ € [0, T

The dependence of f on the the controls u(t) is equivalent to another time-dependence

£(t) = f (z(t), u(t), t|6z)
=7 (ac(t), t|§x>

A time-varying uncontrolled (autonomous, or time-homogeneous) differential equation

P— Continuous-time models (cont.)
2023

Continuous-time

Discrete-time

B(t) = f (x(t), t|§m>

An initial value problem (IVP) consists of a differential equation (ODE) and a restriction

® At t =0, we constrain z(t) to be some fixed value z(0) = xo

A solution to the initial value problem on the open interval [0,¢) that contains the
origin ¢t = 0 is the differentiable function z(-) with z(0) = zp and #(t) = f (:v(t), t|§$)

The solution to the IVP is equivalent to the solution to an integral equation,

z(t) = 20 + /Otf <m(7‘),7‘|§m> dr



P Continuous-time models (cont.)
2023

For notational simplicity, we leave away the dependence of function f on controls u (%)
Continuous-time ® We can keep them fixed in time, together with the other parameters 6,

Discrete-time
® (The initial condition, z(t = 0) = a9, is also fixed)

Then, we have the uncontrolled dynamical system

z(t) = f(t,z(1)]0z), te]0,T]
z(0) = zo

The solution,

(t) :x0+/0 f (2(r), 7|0.) dr

Existence and uniqueness of the solution to the IVP are implied by the properties of f
® Existence is guaranteed by the continuity of f with respect to z(t) and ¢

® For continuous-time systems, existence is not a granted property

P— Continuous-time models (cont.)

2023

Existence and uniqueness
iontr:uo:]“me Let f : [tini, tan] X RY* — RN+ be some continuous function in z(¢) and ¢
Consider the initial value problem with initial value
&(t) = f (t,2(t)]0z), t € [tini, tin]

z(tini) = 2o

The IVP has a solution z : [tini, tan] — RNz and that solution is the unique solution to
the IVP problem if and only if function f is Lipschitz continuous with respect to z(t)

That is, there exists a constant value L € (0, c0) such that for any pair (z(t), z'(t)),

If (2(2), t162) — f (2" (), t]0z) | < Lllz(t) — &' ()], V¢ € [tini, thin]

Or, equivalently, for any pair (z(t), z’(t))

I ((2), £62) — f (2 (%), £]62) |

f; 1:7 \/t E tini:tﬁn
ECEEI0] Pl




P Continuous-time models (cont.)
2023

Continuous-time

Discrete-time

I (z(2), £62) — f (2(2), £]62) |

S L7 Vt € tini: tﬁn
le() == ()] ini ]

Lipschitz continuity of f with respect to z(t) is a property that is difficult to determine

® It is difficult to determine a global (over the time-interval) Lipschitz constant L

A simpler property to be verified is the differentiability of f with respect to z(t)

Because every function f which is differentiable with respect to z(t) is locally Lipschitz
continuous, we define the condition for local existence and uniqueness of the solution

P— Continuous-time models (cont.)
2023

Continuous-time

Discrete-time

Local existence and uniqueness
Let f : [tini, tan] X RY* — RNz be some continuous function in z(t) and ¢
Consider the initial value problem with initial value
@(t) = f (t,2(t)]0z), t € [tini, thin]
z(tini) = 20

If f is continuously differentiable with respect to z(t) for all t € [tin;, t} ], there exists a
non-empty interval [tini, t} ] with t € (tini, tan] where the IVP has a unique solution
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Continnons-time _
Discrete-time

Consider the initial value problem

100 | “ |
&(t) = z2(t), te€[0,2]
z(0) =1
£ o —— B
8
The explicit closed-form solution
1 _ u \‘ |
z(t) = . HOIE | |
—t 0 1 2
z(t) is only defined for ¢t € [0,1) "

Over the shorter interval [0, T'] with T’ < 1, the solution exists and it is also unique

P— Continuous-time models (cont.)
2023

Continuous-time

Discrete-time 4 | ‘ |
Function f (z(t)) = z2(t) is not a

~ globally Lipschitz continuous function

N 9| N
1 I @4@) -1 @A),
[z (t) — z® (1)
0 | . B There is no single L that satisfies the
9 0 9 inequality for all pairs (m"‘(t), x*(t))

z(t)
Function z2(t) is continuously differentiable with respect to z(t), thus locally Lipschitz

O
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Is function f (z(t)) = |z(t)| a globally
Lipschitz continuous function?

If (z*(8)) = f (a*(®))
[z (t) — = ()]l

<L ()

If not, is it at least locally Lipschitz?

Continuous-time
Discrete-time

f(x(1))

1.5

0.5

z(t)

Is function f (z(t)) = |z(¢)|*/2
globally Lipschitz continuous?

If (z%(8)) = f (=*(®))
[z (t) — = ()]l

<L ()

If not, is it at least locally Lipschitz?
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Continuous-time

T T T
1
Is function f (z(t)) = sign(z)|z(t)|*/?
= globally Lipschitz continuous?
=1 0
8
= I 4 @) =1 O _ ;o
-1 [z%(t) —z*@)I  ~
‘ ‘ ‘ If not, is it at least locally Lipschitz?
-2 0 2
z(t)

CHEM-E7225
2023

Continuous-time

S _

Is f (z(t)) = [|z(t)||5 a globally
Lipschitz continuous function?

Ol I (4 (©) =7 2O g
= 2 [z®(t) —z®@)  ~
—2 0 0 If not, is it at least locally Lipschitz?
22
1 () z2(t)
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Continuous-time

Do _

Is f (2(t)) = lo(t)l|2 a globally
Lipschitz continuous function?

~ 2
< I7 @*®) =f 2@ o
= 0 2 [z®(t) —z*@®I  ~
—2 0 0 If not, is it at least locally Lipschitz?
2 _9
21 () z2(t)

CHEM-E7225
2023

Continuous-time
Discrete-time

Is f (2(t)) = [|lz(2)]l,* a globally

0.4 Lipschitz continuous function?
= 0.2 If (z*(1) = f (=* @) |
= s e <L (7)
= [z (t) — z® ()]l
= 0.1

—0.1 5 0 If not, is it at least locally Lipschitz?

0.1Lp1
21 () z2(t)
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Continuous-time models (cont.)

Conditions for global and local existence, and uniqueness of the solution of an IVP are
extended to systems with finitely many discontinuities of function f with respect to ¢

® The solution must be defined separately on each of the continuous subintervals

® At the discontinuity time-points, the derivative is not (strongly) defined

Continuity of the state trajectory is used to enforce the transition between subintervals

® (The end-state of one interval need be the initial state for the next one)

Continuous-time models (cont.)

Steady-state, stationary, equilibrium, or fixed points
® Values of z (fixed 0, and w) such that f (z(¢)|6;) =0

dz(t)
W s ole)

=0

Stability

Consider the time evolution of a (set of) variable(s) of system originally at steady-state
® At some point in time, the system is perturbed, some change occurs

~ The system will respond to the perturbation, move away from SS

A system is stable if its variable(s) return autonomously to their steady-state value(s)
~ A stable system is also said to be a self-regulating process
® A stable system would not need a controller, in general
® (If the steady-state condition is the desired state)

® (And, if we have an infinite amount of time)
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Continuous-time models (cont.)

Stable

SS -

Unstable

SS -

Continuous-time models | LTIs

A very important class of dynamical system are linear time-invariant systems, or LTIs

teR

z(t) € RN=

u(t) € RNu

Ac RNIXNZ

B € RNexNu

{A,B} =6, ¢ R (Ng X Nz )+(Ng X Nu)

Linear time-invariant systems, LTI

I A A

u(t) |a(t) = Az(t) + Bu(t)| y(t)

y(t) = Cz(t) + Du(t)

y(t) € RNy

C € RNyxNa

D € RNyxNu

{C', D} — 9y c RNy X Nz )+ (Ny X Ny)

§8 8 g

Linear time-invariant systems f = Az 4+ Bu are Lipschitz continuous with respect to x
® The global Lipschitz constant L = || A||
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Continuous-time

IR CHNO The solution to the analysis, for ¢ > ¢, an initial state z(#,;) and an input w(t > tn;)

t
z(t) = eA<f—tim>x(tim)+/ e =7) Bu(r)dr

tini

t
y(t) = CeA(t—tini)x(tmi) + C/ eA(t*T)Bu(T)dT+Du(t)

lini
N v
~

Cx(t)

The solution is known as the Lagrange formula

® Based on the state transition matrix

s oAl
P— Continuous-time models | LTIs (cont.)
2023
Controllability of linear time-invariant systems
Contimuous-time Consider a linear and time-invariant system (A, B), with z(t) € RY* and u(t) € RNu

Discrete-time

z(t) = Az(t) + Bu(t)

The system is said to be controllable, if and only if it is possible to transfer the state
of the system from any initial value 2o = z(0) to any other final value zy = z(ts)
® ..., only by manipulating the input u(t)

® ..., in some finite time t; > 0

The final state z; is called the zero-state or the target-state

Process
u(t) |&(t) = Az(t) + Bu(t)| y(t) = z(t)
y(t) = Iz(t)
Controller

u(t) = m (2(1))
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Controllability gramian

Continuous-time

et Consider the linear and time-invariant system (4, B), with z(¢) € R™* and u(t) € RNu

z(t) = Az(t) + Bu(t)

The system’s controllability gramian is a (Nz X Nz) matrix, real and symmetric

t
We(t) :/ eA™BBT AT Tdr
0

Controllability test (I)
Consider the linear and time-invariant system (A, B), with z(t) € R™s and u(t) € RNw
z(t) = Az(t) + Bu(t)

Let Wc(t) = fg eATBBT A" dr be the controllability gramian of the system
® The system is controllable iff W,(t) is non-singular, for all ¢ > 0

CHEM-Er225 State feedback (cont.))

2023
We have system i (t) = Az(t) 4+ Bu(t), we can perfectly measure its state z(t) = y(t)
[ System
u(t) |x(t) = Az(t) + Bu(t) y(t) = z(t)
y(t) = Iz(1)
Controller
u(t) = —Kz(t)

We design controllers that define an optimal control action «(t), given the state z(t)

~u(t) = —Ka(t)

Linear-quadratic regulators (LQR) are model-based controllers

K=(B'QfB+R)™'B'Q;A



T State estimation (cont.))

2023

When we cannot measure the state, z(t) # y(t), we design a device capable to estimate
it from measurable quantities (data) and knowledge about the dynamics (a model)

Continuous-time

Discrete-time The device that approximates the system’s state is a state observer, or estimator
System
u(t) |z(t) = Az(t) + Bu(t) y(t)
y(t) = Cx(t)
Estimator
z(t)
u(t) = —K(z(t))

Controller

Were the state estimate Z(t) accurate, we could use it with the optimal controller (—K)

P Continuous-time models | LTIs (cont.)

2023

Continuous-time

Discrete-time

Observability of linear-time-invariant systems

Consider a linear and time-invariant system (A, C) with z(t) € R™> and u(t) € R
z(t) = Ax(t)
y(t) = Cx(t)

The system is said to be observable if and only if it is possible to determine its state
z(t) from the force-free response of its measurements over a finite time (¢; < o)

® ..., from any arbitrary initial state z(tp)
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Continuous-time

S _

Observability gramian

Consider the linear and time-invariant system (4, C), with z(t) € R"= and y(t) € RNv

2(t) = Az(t)
y(t) = Cz(t)

The system’s observability gramian is a (N; X Nz) matrix, real and symmetric

t
Wo(t) = / eA 70T CeATdr
0

P— Continuous-time models | LTIs (cont.)

2023

Continuous-time

Discrete-time

Observability test (I)

Consider the linear and time-invariant system (A, C), with z(t) € R+ and y(t) € RN

2(t) = Az(t)
y(t) = Cz(t)

Let Wo(t) = fot eATT 0T CeATdr be the observability gramian of the system
® The system is observable iff W, (t) is non-singular, for all ¢ > 0



J— Continuous-time models | LTIs (cont.)
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Proof (Sufficient condition)

From the second Lagrange equation, we have the force-free evolution of the output

Continuous-time

Discrete-time Z/(7-) = (76117-17(0)

We left-multiply the equation by eATT, then we integrate between 0 and some t;

b K
/ eATTy(T)dT = / AT CeATz(0)dr

0 0
= Wo(tr)z(0)

Thus, we have

£(0) = W L(1f) /0 " AT Cy(r)dr

The initial state is given as a function of the inverse of the observability gramian W, (tf)
and the integral f(ff AT CeATy(7)d7 which can be computed from measurements y(7)

® The observability gramian need be non-singular for the inverse to exist

P Continuous-time models | LTIs (cont.)

2023

Continuous-time _

Discrete-time

Luenberger observer

Consider a linear and time-invariant system, z(t) € R+ u(t) € RN«, and y(t) € RV
z(t) = Az(t) + Bu(t)
y(t) = Cx(t) ’

The linear and time-invariant dynamical system

(1) = AZ(t) + Bu(t) + K, (y(t) — (1))
y(t) = Cz(t)

with 7 € RN+, 5(t) € Ry is a Luenberger observer of the system iff K, € RM=*Ny ig
any matrix such that the eigenvalues of matrix A — K, C all have a negative real part



ATy Continuous-time models | LTIs (cont.)

' ' System
S u(?) #(t) = Az(t) + Bu(t) y(t)
y(t) = Cx(t)
Estimator

(1) = AZ(t) + Bu(t) + Kr(y(t) — §(t))
y(t) = Cz(t)

#(t) RS 1)
u(t) = K(Z(t)) e
Controller

Luenberger observers are asymptotic state observers that are also model-based

® Kalman filters are stochastic counterpart, linear-quadratic estimators

— Continuous-time models | DAEs
2023
A class of system models combine differential states z(¢) and algebraic states z(t)
f)"“““"t““"‘e ® The derivative of function z(t) is not expressed explicitly in the model
® 2(t) is determined implicitly by an algebraic (set of) equation(s), h
~ x(t) € RN=
s u(t) € RN
(Time-invariant) Differential algebraic systems, DAE N
~ z(t) € R™Y=
: ~ 0y € RNea
W [FO=rGe@u@eo | e
0= h(x(t), u(t), 2(1)62) Cler
~ b€
y(t) = g (z(t), 2(t), u(t)|6y)
~ y(t) € RNy
~ Oy € RNy

The algebraic equations cannot be solved independently of the differential equations



J— Continuous-time models | DAE (cont.)
2023

' ' [ Z1() | [ fi (21 (t), ..y 2N, (), wa (D), ... un, (B), 21(2), - -y 2N, (8)|0z) ]
ot 5o (1) o (@1(6)se vz ()sur (D) ()21 (), - 2v (£)]02)
g O | i @), an, (8, wa (), uw, (8), 21 (0), -, 2, (£)]6)
0 hi (z1(t),...,zN, (8), w1 (t),. .., un, (), 21(t), ..., 2N, (1)|62)
0 ha (z1(t),...,zN, (t), w1 (t),. .., un, (), 21(t),..., 2N, (2)|62)

0 | Lk @), o (8 wn (), (6, 21 (0), - 2 (£)]60)

Uniqueness of a numerical solution requires non-singularity of the Jacobian of h wrt z

et (ah <x<t>,u<t>,z<t>>> 6

0z

These specific differential algebraic equations are known as index-one DAE

P Continuous-time models | DAE (cont.)
2023
Function h : RNz x RNu x RN: — RN=,
h (z(t), u(t), 2(t)|0z) =
Continuous-time hi (z1(%),..., TN, (t),u1(t),..., UN,, (t), z1(t),..., ZN, (t)]62)

ho (z1(t),...,zn, (1), w1 (t),. .., un, (), 21(t),..., 2N, (1)]62)

B, (21(8), -y, (£)ur (£, uny, (£), 21 (8)s - - 2, (£)]60)

The Jacobian of h with respect to the algebraic state variables z

Oh (2(t), u(t), 2(1)) _

0z
[0h1 (z,u,2)/0z1 -+ Ohi(z,u,2)/0z, --- Ohi(z,u,2)/0zn,] ]
[0ho (%, u,2)/0z1 -+ Oho(z,u,2)/0z,, -+ Ohz(z,u,z)/0zn,]
: (t)
[8hn2 (z,u,2)/0z1 -+ Ohpn, (z,u,2)/02n, -+ Ohn, (z,u, z)/@zNz]
| [0hn, (z,u,2)/0z1 -+ Ohn, (z,u,2)/0z, --- Ohy, (z,u,2)/0zn,]]

N, XN,
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Continuous-time models | DAE (cont.)

Any index-one differential-algebraic equation can be differentiated with respect to time

® This allows for a practical numerical solution using ODE integrators

Because we have that h (z(t), z(t)) = 0, we also have

dh (a(), 2(1) _
dt a

For the total derivative of the algebraic equations, we have

dh (2(1), 2(t)) _ Oh(z(2), 2(1)) dZ(t)+5h (2(1),2(8))  dx(t)

dt 0z dt oz dt
N—— N —
3(t) f(z(t),2(t))
=0

Using the non-singularity of the Jacobian with respect to z, we have

8 = — <8h (m(ati,z(t))> Ok (x(;i,z(t))f (2(1), 2(8)

-~

[\

Continuous-time models (cont.)

A differential model describes the microscopic (in time) behaviour of process (z(t)),s

® That is, the motion of the state in an infinitesimal time period

Consider a tiny time interval At, then f (z(t)) is approximately constant over [0, At]
At
z(At) = xo + f(z(t)) dt
0

At
~ax+f (:Eo)/ dt
0

= a0+ 1 (a0) 113"
=29 —|—f(.’170)At

More generally, the discretisation of infinitesimal dynamics over intervals [t, t + At]

t At
z(t+ At) = z(t) + /t f(z(7))dr
~x(t) + f (z(t)) At

Equivalently, we have
2(t + At) — a(t) ~ f (2(1)) At
Az(t)




J— Continuous-time models (cont.)
2023

z(t+ At) =~ z(t) + f (z(t)) At

Continuous-time To approximate the evolution of process (x(t))tTZO, we divide the interval in K pieces
Discrete-time
T-0

® For simplicity, we would typically let the size of each piece be At = %

® We apply the discretisation scheme on each piece, from xp at t = 0

2(1At) = 2(0) + f (2(0)) At
2(2At) = z(1A¢) + f (z(1At)) At

w(kAt) = z((k — 1)At) + f (z((k — 1)At)) At

2((K — 1)At) = 2((K — 1)At) + f | 2((K — 1)At) | At
— — —
T—-At T—2At T—-2At

x(&?_;) = 2((K — )AL + f | 2((K — 1)At) | At
T—At T—At

P— Continuous-time models (cont.)
2023

t
z(t) =z —l—/o f(z(r),u(r)) dr

Continuous-time

Plertetine Consider a tiny time interval At, then f (z(¢), u(t)) is approximately constant in [0, At]
At
z(At) = 20 + f(z(t),u(t)) dt
0

At
 T0 —I—f(xo,uo)/ dt
0
=z + f (%0, up) At

The discretisation of infinitesimal dynamics over intervals [¢, t + At]
t+AL
z(t + At) = z(t) —|—/ f(z(7),u(r))dr
t
R a(t) + f (2(1), u(t)) At

After we divide the interval in K pieces, the approximation of the evolution of (x(t))tTZO

2(kAt) = z((k — 1)AL) + f (z((k — DAL, u((k — DAY At (k=1,...K)
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Continuous-time models (cont.)

The inputs are generated by a computer and implemented as piecewise constant signals
Zero-order hold controls

That is, the input w(t) is kept constant between two equally spaced times ¢ and ;41
® We define the times when the control is applied as sampling times
® We let the sampling times be {t; = kAt}E_,

® At denotes the (common) duration

The sampling interval At need not be the same one we used for approximating (z(t))

{z(ty = kKA)YE,

Zero-order holding is the operation of keeping a signal constant for ¢ € [tx, tp11)

Continuous-time models (cont.)

Suppose that z(t) = f (z(t), u(t)|0,) is differentiable and that the inputs are piecewise
constant with fixed values u(t) = u; with up € R« over each interval t € [t;, txy1)

We can treat the transition from state z(t;) to z(tx41) as a discrete-time system

® The time in which the system evolves takes values only on a time grid

Qcvvtyovovtgrrree- U NICEREE AR IR t—1- g
At

In each interval (#x, tz41], the solution to the individual IVP exists and it is unique

® With initial value z(t;) = Zinit



J— Continuous-time models (cont.)

2023
We consider the initial value problem, z(0) = zin; and constant control u(t) = uconst

I(t) =f (:v(t), 'Ufconst|9m) , te [0, At]
J}(O) = Zini

Continuous-time

Discrete-time

The unique solution z : [0, At] — R™s to the IVP with zj,i¢ and Uconst is a function

® The arguments are: the initial state z;,; and the constant control uconst

The solution is the state trajectory over the short interval [0, At]

x(ﬂminiauconst;eaz), t e [O,At]

The map from pair (Zipit, Uconst) tO process (ac(t))OAt is denoted as the solution map

The final value z(¢t = At|Zinit, Uconst, Oz ) of this short trajectory is important

® z(At) defines the initial state of the next initial value problem

.’E(t) =f (.T(t), uconstlez), t e [At,ZAt]
x(At) = Tini

P— Continuous-time models (cont.)

2023

We define the transition function that returns the final value z(At|Zini, Uconst; 0z )

Continuous-tim
ontmuousime far : RNz x RNw 5 RN=

Discrete-time

The transition function returns the state z(At|Zini, Uconst; 0z), given Tin; and Uconst

x(At|xini; Uconst ; 990) = fAt (fBini> uconst|9x)

fat is used to define a discrete-time system whose evolution describes the state at {#}

z(tri1) = fae (2(te), w|0z) (k=0,1,...K)

When we discuss general dynamical system, we will often refer to discrete-time systems
® The transition function fa; may be only available implicitly

® Often, we will define it as a computer routine/function



J— Continuous-time models (cont.)
2023
For linear and time-invariant dynamical systems & (t) = Az (t)+ Bu(t) with £(0) = Zinit
and constant input uconst, the solution map z(t|zini, Uini, 0z ) is explicitly known
Continuous-time t
Dt (| Tini, Uini, O0z) = €' 2in; +/ e Buconst d7
0

J/

-~
fat(Zini>Uconst |0z)

t
= eAtmini + Buconst / eA(t_T) dr
0

[\ S/

~
fat(Zinisuconst |0z)

The corresponding discrete-time system with sampling time At is linear time-invariant
x(tk+1):AAtx(tk)+BAtul€Ja (k:07177K_1)
S (o (t) 102

s Any = e4Bt and Bay = B fOAt eA(At=T) gr

Because At is fixed, also Aa: and Bay are fixed (the elements are not function of time)

® LTI continuous-time system (A, B) maps to LTT discrete-time system (Aa¢, Bat)

]
P — Discrete-time models
2023
Gontinuous-time We describe a controlled dynamical system in discrete-time with a difference equation
Discrete-time
Tpy1 = fio (o, ukl0z), k€ Nowrx—1
~ K + 1 state vectors, o, T1, ..., %k, ..., Tx € RNz
~ K input vectors, ug, Ui, ..., Uy, ..., Ug_1 € RNu
~~ Some time horizon of length K
~ Parameter vector 0, € RVox
~» (Time-varying dynamics)
Given the initial state zg and all the controls ug, u1, ..., ux _1, we could recursively call
the functions fi (zx, ux|0z) and sequentially obtain all the other states z1, z2, ..., zx

® This recursion is known as forward simulation of the system dynamics



P Discrete-time models (cont.)
2023

Continuous-time _

Diizexaie-ilme Forward simulation

The forward simulation of the system dynamics is formally defined as a function
® The argument are zg and the collection wug, u1, ..., ux_1
® The image is the collection xg, 71, ..., Tk
That is, we have
foim ¢ RNz +(KEXNy) _, R(K+1)N;

: (w0, uo, ut, ..., ug—1) — (20, 21,...,2K)

Function fs; is defined by the recursive solution of the problem

Tpt1 = fr (Tk, ug|0z) (for all kK € Nowwx—1)

P Discrete-time models | LTI
2023
® 19,x1,...,x —K,...,xg € RNz
Linear time-invariant systems, LTI ® UQ, UL,y Uk, Uk —1 € RNVu
Continuous-time e Ac RNIXNI
Discrete-time Tp41 = Az, + Bug, k€ Nowk—1 N
* B € RNaXNu
* {A,B} =6, ¢ R (Ng X Ng )+ (Ng X Ny )

The forward simulation map of linear time-invariant systems with horizon of length K

e
Il
X
fsim (0, U0, - -, ug—1) = | 2
| zK
_ 2
Axg + Bug

A2:I:0 + ABuO + Buj

| AK 2y + ZkK:_()l AK=1=F By,



J— Discrete-time models | LTI (cont.)
2023

X0 x0
Continuous-time xr1 AZE() + B'LLO
Discrete-time T2 AQ‘/L‘O + ABUO + Bul

TK AKxO—}—ZkK:_Ol AK=1=F By

J/

~
Fsim (20,0, UK —1)

Consider the terminal value zx after K steps from zg and subjected to ug ~~ ug _1,

Uuo
ul

i = [AK-1B  AK-2B ... B]
Cx UK —1

Matrix Cg is the discrete-time controllability matrix of the linear time-invariant system

® The discrete-time version because based on the discrete pair (A, B)

P Discrete-time models | Affine

2023

Affine time-varying systems are an important generalisation of the plain LTI model

Continuous-time

Discrete-time

® T, Tl Ty, T € RN
Affine time-varying systems ® U, ULy, Uy oo UK 1 € RNu
® Ag,A1,..., A, ..., A € RNaXNa
BO,Bl,...,Bk,...,BK GRN:CXNu
{AL, By} = 0, € RMWaXNe)+(No X Nu)

Tp41 = Agxp + Brug + ¢, k€ Nowwg—1

Affine time-varying systems arise from trajectory linearisations of nonlinear models

Tpt+1 = fr (zh, upl0z)
® Linearisation of nonlinear (and time-varying) dynamics around point (T, )
® We assume the that point (Zy,uy) is a term in a trajectory {(xx, ur)}

® (For example, {Zo,Z1,...,Zx } and {wo,¥1,...,Ux_1})
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&(t) = fr (x(t), u(t)[0z)

In continuous-time, we would approximate (nonlinear and time-varying) dynamics f*
with a first-order Taylor’s expansion around the point (Z(t),w(t)) along the trajectory

Continuous-time

Discrete-time

After defining the deviation variables z’(t) = z(t) — Z(t) and «/(t) = u(t) — u(t),

aff aff arl aff
z] (t) oz Oz, z] (¢) ouy Quy, uf (1)
. = . . + .
J:‘(\/.’I' (t) 8/<1 8/<I :L‘[/V,’l,‘ ( t) 81{1 a/<: uf/V'u (f)
& (1) 1 02N, d @y, myy @0 Ou Ounud @@y, my) v (@)
Al Bt
t
fa

+

i
N, (z(1),u(t))
—————

ot

® Al is the Jacobian of f! with respect to z, at (Z(t),u(t))
® B! is the Jacobian of f! with respect to u, at (Z(t),u(t))
e clis f! evaluated at (Z(t),u(t))

P— Discrete-time models | Affine (cont.)

2023

Contimoustime The affine continuous-time approximation expressed in terms of deviation variables,

Discrete-time

/ t . t / t e t /
zq (1) aiq ay N, zq (1) bi1 bi N, uy (t)
= : ; +
/ t t / t t /
TN, (t) N, 1 T AN, N, N, (t) bn,1 0 bhnd LUn, ()
zL‘./(t) (Ngy X Ny) (N;I; Xl) (\«\“‘vy X Ny,) (N'u,Xl)
t
“
Ca
+ .
t
c,



J— Discrete-time models | Affine (cont.)
2023

T = fi (zx, ug|0)

Continuous-time

Similarly, we can approximate nonlinear and time-varying dynamics in discrete-time

Discrete-time

We have the affine time-varying system,

Tpt1 — Tht1 = Jio (Thy k) — Thg1
—————

‘Tlg-i—l
of _ of _ L _
X | (my—Tmp)+ | (up =)+ fi (T, Tk) — Thg
ox!(zy,,ur,) — oul (@, up) - ~— ~~ <
—_——— 1
AkERNIXNI Ty, BkERmeNu Uy, c,€ER z X

The forward simulation map of affine time-varying systems, for a horizon of length K

K—-1 K—-1
v = (Ax—1---Ao)zo+ > | J] A | (Brw + cx)
k=0 \j=k+1

CHEM-E7225
2023

Continuous-time

Discrete-time

Numerical
simulations

Numerical simulations

Dynamical models and numerical simulations
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Numerical simulations

The design/deployment of optimal controllers depends on the availability of efficient/
accurate numerical simulation tools that build discretisations of continuous dynamics

We know that the IVP &(t) = f (z(¢), u(t)|0z) with 2(0) = zo has a unique solution
when f is Lipschitz continuous with respect to z(t) and continuous with respect to t

~ A solution exists on the interval [0, T, even if time T > 0 is arbitrary small

Numerical simulation methods compute approximate solutions to some well-posed IVP

® (Well-posedness is in the sense of the existence/uniqueness theorem)

For practical reasons, numerical simulation methods can be categorised in two groups

® Single-step methods and multi-step methods

Typically, each group is then divided into two main subgroups

® Explicit methods and implicit methods

Numerical simulations (cont.)

The idea of a numerical simulation method is to compute an approximation to a solu-
tion map z(t|Zini, Uconst; 0z) for ¢ € [0, T'], the computation is known as an integrator

~+ Remember, the function from pair (#inj, Uconst) t0 process {x(t)}g

An intuitive way to compute an approximation for z(¢|Zinit, Uconst; 0z) when ¢t € [0, T
® Perform a linear extrapolation, based on the time derivative of z (%)
® From the initial point zj,it, under constant controls uconst
® (The time-derivative is the &(¢) = f (z(t), u(¢)|0z))
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Numerical simulations | Explicit Euler

The approach is an explicit Euler integration step, a good approximation if 7T is tiny

x(t|xinit7 Uconst; Oz) = iL’(O|fCinit; Uconst ; 91),+f ($init7 Uconst|gm) (t - 0) t € [0, T]

N Vv
Tini tf(xinitauconstleﬂi)

= /m\(t|3}ini, Uconst 990)

The error of the explicit Euler integration step is of order T2, it grows as T2 grows
® Or informally, the approximation error is small if T' is very small

® The error is directly related to the truncation in the expansion

Numerical simulations | Explicit Euler (cont.)

The practical implementation of the explicit explicit Euler integration method
We consider a now longer interval with ¢ € [0, T] and we divide it in K subintervals

O---1:+-2.0.... (k—1)- k- (k4+1)---- (K—-1)---K
N——

At

® Typically, we set each subinterval to have the same time-length

At = —
K

® We denote the K time points {t;} as nodes in the time grid

Starting from Tg = Znit, we then perform K sequential linear extrapolation steps

57\/€+1 = T —|—f(/l\‘k,uconst|9m)At, k=0,1,..., K—1

For notational simplicity, we set the indexing for k£ to start from zero

® This allows us to start the sequence with Tg = zjp;
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Numerical simulations | Explict Euler (cont.)

Sequentially, the individual integration steps

~ k=0
/fil = /-'17\0 +f (/37\0; uconst|oz) At
252 = ZL'\l +f (33\13 Uconsth)At
~ k=K-—-1

T = T 1+ [ (T —1, Uconst |0z) At

Numerical simulations | Explicit Euler (cont.)

Explicit Euler (f and At)

Tini, Ucont /-'E\k-|-1 = /fl?k + f (/«T\k, Uconst |01) At ZE( T)
k=0,1,...,K -1

To compute the approximation zj1; at node k + 1, an explicit Euler integration only
requires information related to node k, specifically the numerical approximation Ty

® (The method is presented assuming that the dynamics are time-invariant)

The local (at k) approximation error gets smaller with the ‘length’ of the subintervals

® Using smaller (more) subintervals would lead to more accurate approximations

The Euler method is stable as the propagation of local errors is bounded by a constant

l|/x\(T|$init7 Uconst 91) - .’17( T|xinit, Uconst y 93:) ||

WV
Accumulated approximation error
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Numerical simulations | Explicit Euler (cont.)

The consistency error of each subinterval is of order (At)? and there are z subintervals

® The global, accumulated, error at the final time has order (At)QE = TAt

, Explicit Euler
10° o T
&
O
o..
107k S E
o, ]
o e
(0] S
5107 O E
3 h
3 =
.
‘10_4 \O\\ k!
oo
o)
5
10
10° 10' 10° 10° 10"

Number of steps

The error function is linear in the number of function evaluations, slope equal to one

Numerical simulations | Explicit Euler (cont.)

This would suggest running integration procedures with many small-sized subintervals
~» The scheme requires the evaluation of function f (Zini, tconst|0z) at each step

~~ Good approximations with many steps require many function evaluations

(Other methods can achieve the desired accuracy levels with lower computational cost)
O



ATy Numerical simulations | Explicit Runge-Kutta
2023

The order-4 Runge-Kutta integration method, RK4 generates a sequence of values Ty, by
evaluating (and store) function f four times at each node k, from Zo = Zinit

Continuous-time From approximation Z; and with constant input uconst, at each node k we have
Discrete-time
Numerical R1 = f (?fk‘a Uconst |9313)

simulations

At
R2 = f T + 7K/1a Uconst |0x

At
K3 = f TE + 7:‘12, Uconst|ex

kg =f (?E\k + Atks, Uconst|0z)

Each function evaluation is explicit and performed around the approximation point 7

® The evaluations are stored as k; € RVz, i € {1,2,3,4}

The evaluations are then combined to construct the next approximation Zj41 point

R . h
a:k+1:mk—i—g(m—l—2ng—l—2m3—l—m4), k=0,1,..., K —1

T Numerical simulations | Explicit Runge-Kutta (cont.)

2023

Continuous-time
Discrete-time
Numerical The solution map obtained by using an explicit Runge-Kutta method of order-4, RK4
simulations

Explicit Runge-Kutta (f and At)

h ~
Tini, Ucont /m\k+1 = /.’E\k —+ g (1431 + 2k2 + 2Kk3 + 14,4) .’E(T)

k=0,1,...,K —1

It can be understood as a continuous and differentiable nonlinear function

® The maximum order of differentiability depends on function f
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Numerical simulations | Explicit Runge-Kutta (cont.)

One step of the RK4 method is as expensive as four Euler steps, though more accurate

® The accumulated approximation error has order T'(At)*

Explicit Euler vs Runge-Kutta 4

10° e
@ Ot O--0-igli o
“O\‘ O--- O---._. o
. O----gllll
107 - O S----0
‘..
o
=107 Q.. 1
3 O
O -©-Euler oL
O-RK4 e e O----4
107k 1
—20
10 L L Lol L L Lol L L ool L L PR
10° 10’ 10° 10° 10°
Number of steps

Numerical simulations | Explicit Runge-Kutta (cont.)
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Numerical simulations (cont.)

Summarising, consider a numerical simulation scheme over some time interval [tg, tf]

® The subintervals have a length At = ({9 — t¢)/K

to« -ty -rtg-veen- o1t tgyg t—1- -t
At

® The nodes are indexed as k =0,1,..., K
® The position of the nodes

tpi=to + kAt, k=0,1,...,K
The solution is approximated at nodes t; by discrete values
T ~ z(tg|z(to), Uconst; Oz ) (k=0,1,...,K)
Convergence
We define the order-p convergence of a method as worst-case local approximation error

max |3 — 2(t)]| = O (A1)

geeey

As K — oo, we expect that T, gets closer to z ()



