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We focus on deterministic di↵erential equation models of dynamical systems, in time

• All numerical simulation methods executed on a computer discretise time

We highlight some relevant properties of continuos-time systems

• How to convert them to discrete-time systems

Continuous-time systems are often described by ordinary di↵erential equations (ODE)

 Other common forms of ODEs (delayed ODE)

 Di↵erential-algebraic equations (DAE)

 Partial di↵erential equations (PDE)
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Continuous-time models (cont.)

We describe controlled dynamical systems in continuous-time with a first-order ODE

ẋ(t) = f (t , x(t), u(t)|✓x )

Nonlinear time-varying systems

ẋ(t) = f (t , x(t), u(t)|✓x )

y(t) = g (t , x(t), u(t)|✓y )

u(t) y(t)

 x(t) 2 R
Nx

 u(t) 2 R
Nu

 ✓x 2 R
N✓x

 t 2 R

 y(t) 2 R
Ny

 ✓y 2 R
N✓y

Function f is a general map from time t , state x(t), controls u(t) and parameters ✓x
• f : [0,T ] ⇥ R

Nx ⇥ R
Nu 7! R

Nx , to the rate of change of the state

• Because t is an explicit argument, function f is time-varying

2

6664

ẋ1(t)
ẋ2(t)
...

˙xNx (t)

3

7775
=

2

6664

f1 (x1(t), x2(t), . . . , xNx (t), u1(t), u2(t), . . . , uNu (t), t |✓x )
f2 (x1(t), x2(t), . . . , xNx (t), u1(t), u2(t), . . . , uNu (t), t |✓x )

...
fNx (x1(t), x2(t), . . . , xNx (t), u1(t), u2(t), . . . , uNu (t), t |✓x )

3

7775
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2

6664

ẋ1(t)
ẋ2(t)
...

˙xNx (t)

3

7775

| {z }
ẋ(t)

=

2

6664

f1 (x1(t), x2(t), . . . , xNx (t), u1(t), u2(t), . . . , uNu (t), t |✓x )
f2 (x1(t), x2(t), . . . , xNx (t), u1(t), u2(t), . . . , uNu (t), t |✓x )

...
fNx (x1(t), x2(t), . . . , xNx (t), u1(t), u2(t), . . . , uNu (t), t |✓x )

3

7775

| {z }
f (x(t),u(t),t|✓x )

We are interested in the conditions under which the di↵erential equation has a solution

• Given a fixed initial value x(0) for the state, and controls u(t) with t 2 [0,T ]

The dependence of f on the the controls u(t) is equivalent to another time-dependence

ẋ(t) = f (x(t), u(t), t |✓x )

:= f
⇣
x(t), t |✓x

⌘

A time-varying uncontrolled (autonomous, or time-homogeneous) di↵erential equation
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Continuous-time models (cont.)

ẋ(t) = f
⇣
x(t), t |✓x

⌘

An initial value problem (IVP) consists of a di↵erential equation (ODE) and a restriction

• At t = 0, we constrain x(t) to be some fixed value x(0) = x0

A solution to the initial value problem on the open interval [0, t) that contains the

origin t = 0 is the di↵erentiable function x(·) with x(0) = x0 and ẋ(t) = f
⇣
x(t), t |✓x

⌘

The solution to the IVP is equivalent to the solution to an integral equation,

x(t) = x0 +

Z t

0
f
⇣
x(⌧), ⌧ |✓x

⌘
d⌧
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For notational simplicity, we leave away the dependence of function f on controls u(t)

• We can keep them fixed in time, together with the other parameters ✓x
• (The initial condition, x(t = 0) = x0, is also fixed)

Then, we have the uncontrolled dynamical system

ẋ(t) = f (t , x(t)|✓x ) , t 2 [0,T ]

x(0) = x0

The solution,

x(t) = x0 +

Z t

0
f (x(⌧), ⌧ |✓x ) d⌧

Existence and uniqueness of the solution to the IVP are implied by the properties of f

• Existence is guaranteed by the continuity of f with respect to x(t) and t

• For continuous-time systems, existence is not a granted property
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Continuous-time models (cont.)

Theorem
Existence and uniqueness

Let f : [tini, tfin] ⇥ R
Nx ! R

Nx be some continuous function in x(t) and t

Consider the initial value problem with initial value

ẋ(t) = f (t , x(t)|✓x ) , t 2 [tini, tfin]

x(tini) = x0

The IVP has a solution x : [tini, tfin] ! R
Nx and that solution is the unique solution to

the IVP problem if and only if function f is Lipschitz continuous with respect to x(t)

That is, there exists a constant value L 2 (0,1) such that for any pair (x(t), x 0(t)),

kf (x(t), t |✓x ) � f
�
x 0(t), t |✓x

�
k  Lkx(t) � x 0(t)k, 8t 2 [tini, tfin]

Or, equivalently, for any pair (x(t), x 0(t))

kf (x(t), t |✓x ) � f (x 0(t), t |✓x ) k

kx(t) � x 0(t)k
 L, 8t 2 [tini, tfin]
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kf (x(t), t |✓x ) � f (x 0(t), t |✓x ) k

kx(t) � x 0(t)k
 L, 8t 2 [tini, tfin]

Lipschitz continuity of f with respect to x(t) is a property that is di�cult to determine

• It is di�cult to determine a global (over the time-interval) Lipschitz constant L

A simpler property to be verified is the di↵erentiability of f with respect to x(t)

Because every function f which is di↵erentiable with respect to x(t) is locally Lipschitz
continuous, we define the condition for local existence and uniqueness of the solution
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Continuous-time models (cont.)

Theorem
Local existence and uniqueness

Let f : [tini, tfin] ⇥ R
Nx ! R

Nx be some continuous function in x(t) and t

Consider the initial value problem with initial value

ẋ(t) = f (t , x(t)|✓x ) , t 2 [tini, tfin]

x(tini) = x0

If f is continuously di↵erentiable with respect to x(t) for all t 2 [tini, t 0fin], there exists a
non-empty interval [tini, t 0fin] with t 0fin 2 (tini, tfin] where the IVP has a unique solution
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Example

Consider the initial value problem

ẋ(t) = x2(t), t 2 [0, 2]

x(0) = 1

The explicit closed-form solution

x(t) =
1

1 � t

x(t) is only defined for t 2 [0, 1)

0 1 2

�100

0

100

t

x
(t
)

Over the shorter interval [0,T 0] with T 0 < 1, the solution exists and it is also unique
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Continuous-time models (cont.)

�2 0 2

0

2

4

x(t)

f
(x

(t
))

Function f (x(t)) = x2(t) is not a
globally Lipschitz continuous function

kf
�
x|(t)

�
� f

�
x�(t)

�
k

kx|(t) � x�(t)k ◆ L

There is no single L that satisfies the
inequality for all pairs

�
x|(t), x�(t)

�

Function x2(t) is continuously di↵erentiable with respect to x(t), thus locally Lipschitz
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Example

�2 0 2

0

1

2

x(t)

f
(x

(t
))

Is function f (x(t)) = |x(t)| a globally
Lipschitz continuous function?

kf
�
x|(t)

�
� f

�
x�(t)

�
k

kx|(t) � x�(t)k
 L (?)

If not, is it at least locally Lipschitz?
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Example

�2 0 2

0

0.5

1

1.5

x(t)

f
(x

(t
))

Is function f (x(t)) = |x(t)|1/2

globally Lipschitz continuous?

kf
�
x|(t)

�
� f

�
x�(t)

�
k

kx|(t) � x�(t)k
 L (?)

If not, is it at least locally Lipschitz?
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Example

�2 0 2

�1

0

1

x(t)

f
(x

(t
))

Is function f (x(t)) = sign(x)|x(t)|1/2

globally Lipschitz continuous?

kf
�
x|(t)

�
� f

�
x�(t)

�
k

kx|(t) � x�(t)k
 L (?)

If not, is it at least locally Lipschitz?
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Continuous-time models (cont.)

Example

�2
0

2 �2

0

2
0

5

x1(t)
x2(t)

f
(x

(t
))

Is f (x(t)) = kx(t)k22 a globally
Lipschitz continuous function?

kf
�
x|(t)

�
� f

�
x�(t)

�
k

kx|(t) � x�(t)k
 L (?)

If not, is it at least locally Lipschitz?
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Example

�2
0

2 �2

0

2
0

2

x1(t)
x2(t)

f
(x

(t
))

Is f (x(t)) = kx(t)k2 a globally
Lipschitz continuous function?

kf
�
x|(t)

�
� f

�
x�(t)

�
k

kx|(t) � x�(t)k
 L (?)

If not, is it at least locally Lipschitz?
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Continuous-time models (cont.)

Example

�0.1
0

0.1�0.1

0
0.10

0.2

0.4

x1(t)
x2(t)

f
(x

(t
))

Is f (x(t)) = kx(t)k
1/2
2 a globally

Lipschitz continuous function?

kf
�
x|(t)

�
� f

�
x�(t)

�
k

kx|(t) � x�(t)k
 L (?)

If not, is it at least locally Lipschitz?
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Conditions for global and local existence, and uniqueness of the solution of an IVP are
extended to systems with finitely many discontinuities of function f with respect to t

• The solution must be defined separately on each of the continuous subintervals

• At the discontinuity time-points, the derivative is not (strongly) defined

Continuity of the state trajectory is used to enforce the transition between subintervals

• (The end-state of one interval need be the initial state for the next one)
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Continuous-time models (cont.)

Steady-state, stationary, equilibrium, or fixed points

• Values of x (fixed ✓x and u) such that f (x(t)|✓x ) = 0

dx(t)

dt
= f (x(t)|✓x )

= 0

Stability

Consider the time evolution of a (set of) variable(s) of system originally at steady-state

• At some point in time, the system is perturbed, some change occurs

 The system will respond to the perturbation, move away from SS

A system is stable if its variable(s) return autonomously to their steady-state value(s)

 A stable system is also said to be a self-regulating process

• A stable system would not need a controller, in general

• (If the steady-state condition is the desired state)

• (And, if we have an infinite amount of time)
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Continuous-time models (cont.)

Time (t)

SS

Stable

Time (t)

SS

Unstable
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Continuous-time models | LTIs

A very important class of dynamical system are linear time-invariant systems, or LTIs

Linear time-invariant systems, LTI

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) +Du(t)

u(t) y(t)

 t 2 R

 x(t) 2 R
Nx

 u(t) 2 R
Nu

 A 2 R
Nx⇥Nx

 B 2 R
Nx⇥Nu

 {A,B} = ✓x 2 R
(Nx⇥Nx )+(Nx⇥Nu )

 y(t) 2 R
Ny

 C 2 R
Ny⇥Nx

 D 2 R
Ny⇥Nu

 {C ,D} = ✓y 2 R
(Ny⇥Nx )+(Ny⇥Nu )

Linear time-invariant systems f = Ax +Bu are Lipschitz continuous with respect to x

• The global Lipschitz constant L = kAk
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Continuous-time models | LTIs (cont.)

The solution to the analysis, for t � tini, an initial state x(tini) and an input u(t � tini)

x(t) = eA(t�tini)x(tini) +

Z t

tini

eA(t�⌧)Bu(⌧)d⌧

y(t) = CeA(t�tini)x(tini) + C

Z t

tini

eA(t�⌧)Bu(⌧)d⌧

| {z }
Cx(t)

+Du(t)

The solution is known as the Lagrange formula

• Based on the state transition matrix

 eAt
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Continuous-time models | LTIs (cont.)

Definition
Controllability of linear time-invariant systems

Consider a linear and time-invariant system (A,B), with x(t) 2 R
Nx and u(t) 2 R

Nu

x(t) = Ax(t) + Bu(t)

The system is said to be controllable, if and only if it is possible to transfer the state
of the system from any initial value x0 = x(0) to any other final value xf = x(tf )

• ..., only by manipulating the input u(t)

• ..., in some finite time tf � 0

The final state xf is called the zero-state or the target-state

ẋ(t) = Ax(t) + Bu(t)

y(t) = Ix(t)

Process

u(t) = ⇡ (x(t))

Controller

u(t) y(t) = x(t)
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Definition
Controllability gramian

Consider the linear and time-invariant system (A,B), with x(t) 2 R
Nx and u(t) 2 R

Nu

x(t) = Ax(t) + Bu(t)

The system’s controllability gramian is a (Nx ⇥ Nx ) matrix, real and symmetric

Wc(t) =

Z t

0
eA⌧BBT eA

T ⌧d⌧

Theorem
Controllability test (I)

Consider the linear and time-invariant system (A,B), with x(t) 2 R
Nx and u(t) 2 R

Nu

x(t) = Ax(t) + Bu(t)

Let Wc(t) =
R t
0 eA⌧BBT eA

T ⌧d⌧ be the controllability gramian of the system

• The system is controllable i↵ Wc(t) is non-singular, for all t > 0
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State feedback (cont.))

We have system ẋ(t) = Ax(t) + Bu(t), we can perfectly measure its state x(t) = y(t)

ẋ(t) = Ax(t) + Bu(t)

y(t) = Ix(t)

System

u(t) = �Kx(t)

Controller

u(t) y(t) = x(t)

We design controllers that define an optimal control action u(t), given the state x(t)

 u(t) = �Kx(t)

Linear-quadratic regulators (LQR) are model-based controllers

K =
�
B 0Qf B + R

��1
B 0Qf A
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When we cannot measure the state, x(t) 6= y(t), we design a device capable to estimate
it from measurable quantities (data) and knowledge about the dynamics (a model)

The device that approximates the system’s state is a state observer, or estimator

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

System

Estimator

u(t) = �K (bx(t))

Controller

u(t) y(t)

bx(t)

Were the state estimate bx(t) accurate, we could use it with the optimal controller (�K )
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Continuous-time models | LTIs (cont.)

Definition
Observability of linear-time-invariant systems

Consider a linear and time-invariant system (A,C ) with x(t) 2 R
Nx and u(t) 2 R

Ny

ẋ(t) = Ax(t)

y(t) = Cx(t)

The system is said to be observable if and only if it is possible to determine its state
x(t) from the force-free response of its measurements over a finite time (tf < 1)

• ..., from any arbitrary initial state x(t0)



CHEM-E7225
2023

Dynamical
models

Continuous-time

Discrete-time

Numerical
simulations

Continuous-time models | LTIs (cont.)

Definition
Observability gramian

Consider the linear and time-invariant system (A,C ), with x(t) 2 R
Nx and y(t) 2 R

Ny

(
ẋ(t) = Ax(t)

y(t) = Cx(t)

The system’s observability gramian is a (Nx ⇥ Nx ) matrix, real and symmetric

Wo(t) =

Z t

0
eA

T ⌧CTCeA⌧d⌧
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Continuous-time models | LTIs (cont.)

Theorem
Observability test (I)

Consider the linear and time-invariant system (A,C ), with x(t) 2 R
Nx and y(t) 2 R

Ny

(
ẋ(t) = Ax(t)

y(t) = Cx(t)

Let Wo(t) =
R t
0 eA

T ⌧CTCeA⌧d⌧ be the observability gramian of the system

• The system is observable i↵ Wo(t) is non-singular, for all t > 0
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Continuous-time models | LTIs (cont.)

Proof (Su�cient condition)

From the second Lagrange equation, we have the force-free evolution of the output

y(⌧) = CeA⌧ x(0)

We left-multiply the equation by eA
T ⌧ , then we integrate between 0 and some tf

Z tf

0
eA

T ⌧y(⌧)d⌧ =

Z tf

0
eA

T ⌧CeA⌧ x(0)d⌧

= Wo(tf )x(0)

Thus, we have

x(0) = W�1
o (tf )

Z tf

0
eA

T ⌧Cy(⌧)d⌧

The initial state is given as a function of the inverse of the observability gramianWo(tf )

and the integral
R tf
0 eA

T ⌧CeA⌧y(⌧)d⌧ which can be computed from measurements y(⌧)

• The observability gramian need be non-singular for the inverse to exist

⌅
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Continuous-time models | LTIs (cont.)

Definition

Luenberger observer

Consider a linear and time-invariant system, x(t) 2 R
Nx , u(t) 2 R

Nu , and y(t) 2 R
Ny

(
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
,

The linear and time-invariant dynamical system

(
ḃx(t) = Abx(t) + Bu(t) +KL (y(t) � by(t))
by(t) = Cbx(t)

,

with bx 2 R
Nx , by(t) 2 R

Ny is a Luenberger observer of the system i↵ KL 2 R
Nx⇥Ny is

any matrix such that the eigenvalues of matrix A � KLC all have a negative real part
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Continuous-time models | LTIs (cont.)

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

System

ḃx(t) = Abx(t) + Bu(t) +KL(y(t) � by(t))
by(t) = Cbx(t)

Estimator

u(t) = K (bx(t))

Controller

u(t) y(t)

by(t)bx(t)

Luenberger observers are asymptotic state observers that are also model-based

• Kalman filters are stochastic counterpart, linear-quadratic estimators
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Continuous-time models | DAEs

A class of system models combine di↵erential states x(t) and algebraic states z (t)

• The derivative of function z (t) is not expressed explicitly in the model

• z (t) is determined implicitly by an algebraic (set of) equation(s), h

(Time-invariant) Di↵erential algebraic systems, DAE

ẋ(t) = f (x(t), u(t), z (t)|✓x )

0 = h (x(t), u(t), z (t)|✓z )

y(t) = g (x(t), z (t), u(t)|✓y )

u(t) y(t)

 x(t) 2 R
Nx

 u(t) 2 R
Nu

 z (t) 2 R
Nz

 ✓x 2 R
N✓x

 ✓z 2 R
N✓z

 t 2 R

 y(t) 2 R
Ny

 ✓y 2 R
N✓y

The algebraic equations cannot be solved independently of the di↵erential equations
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Continuous-time models | DAE (cont.)

2

6666666666666664

ẋ1(t)
ẋ2(t)
...

˙xNx (t)

0
0
...
0

3

7777777777777775

=

2

6666666666666664

f1 (x1(t), . . . , xNx (t), u1(t), . . . , uNu (t), z1(t), . . . , zNz (t)|✓x )
f2 (x1(t), . . . , xNx (t), u1(t), . . . , uNu (t), z1(t), . . . , zNz (t)|✓x )

...
fNx (x1(t), . . . , xNx (t), u1(t), . . . , uNu (t), z1(t), . . . , zNz (t)|✓x )

h1 (x1(t), . . . , xNx (t), u1(t), . . . , uNu (t), z1(t), . . . , zNz (t)|✓z )
h2 (x1(t), . . . , xNx (t), u1(t), . . . , uNu (t), z1(t), . . . , zNz (t)|✓z )

...
hNz (x1(t), . . . , xNx (t), u1(t), . . . , uNu (t), z1(t), . . . , zNz (t)|✓z )

3

7777777777777775

Uniqueness of a numerical solution requires non-singularity of the Jacobian of h wrt z

det

 
@h (x(t), u(t), z (t))

@z

!
6= 0

These specific di↵erential algebraic equations are known as index-one DAE
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Continuous-time models | DAE (cont.)
Function h : R

Nx ⇥ R
Nu ⇥ R

Nz ! R
Nz ,

h (x(t), u(t), z (t)|✓x ) =
2

6664

h1 (x1(t), . . . , xNx (t), u1(t), . . . , uNu (t), z1(t), . . . , zNz (t)|✓z )
h2 (x1(t), . . . , xNx (t), u1(t), . . . , uNu (t), z1(t), . . . , zNz (t)|✓z )

...
hNz (x1(t), . . . , xNx (t), u1(t), . . . , uNu (t), z1(t), . . . , zNz (t)|✓z )

3

7775

The Jacobian of h with respect to the algebraic state variables z

@h (x(t), u(t), z (t))

@z
=

2

666666666664

⇥
@h1 (x , u, z )/@z1 · · · @h1 (x , u, z )/@znz · · · @h1 (x , u, z )/@zNz

⇤

⇥
@h2 (x , u, z )/@z1 · · · @h2 (x , u, z )/@znz · · · @h2 (x , u, z )/@zNz

⇤

...⇥
@hnz (x , u, z )/@z1 · · · @hnz (x , u, z )/@znz · · · @hnz (x , u, z )/@zNz

⇤

...⇥
@hNz (x , u, z )/@z1 · · · @hNz (x , u, z )/@znz · · · @hNz (x , u, z )/@zNz

⇤

3

777777777775

(t)

| {z }
Nz⇥Nz



CHEM-E7225
2023

Dynamical
models

Continuous-time

Discrete-time

Numerical
simulations

Continuous-time models | DAE (cont.)

Any index-one di↵erential-algebraic equation can be di↵erentiated with respect to time

• This allows for a practical numerical solution using ODE integrators

Because we have that h (x(t), z (t)) = 0, we also have

dh (x(t), z (t))

dt
= 0

For the total derivative of the algebraic equations, we have

dh (x(t), z (t))

dt
=

@h (x(t), z (t))

@z

dz (t)

dt| {z }
ż(t)

+
@h (x(t), z (t))

@x

dx(t)

dt| {z }
f (x(t),z(t))

= 0

Using the non-singularity of the Jacobian with respect to z , we have

ż (t) = �

 
@h (x(t), z (t))

@z

!�1

| {z }

@h (x(t), z (t))

@x
f (x(t), z (t))
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Continuous-time models (cont.)

A di↵erential model describes the microscopic (in time) behaviour of process (x(t))t�0

• That is, the motion of the state in an infinitesimal time period

Consider a tiny time interval �t , then f (x(t)) is approximately constant over [0,�t ]

x(�t) = x0 +

Z �t

0
f (x(t)) dt

⇡ x0 + f (x0)

Z �t

0
dt

= x0 + f (x0) [t ]
�t
0

= x0 + f (x0)�t

More generally, the discretisation of infinitesimal dynamics over intervals [t , t +�t ]

x(t +�t) = x(t) +

Z t+�t

t
f (x(⌧)) d⌧

⇡ x(t) + f (x(t))�t

Equivalently, we have
x(t +�t) � x(t)
| {z }

�x(t)

⇡ f (x(t))�t
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Continuous-time models (cont.)

x(t +�t) ⇡ x(t) + f (x(t))�t

To approximate the evolution of process (x(t))Tt=0, we divide the interval in K pieces

• For simplicity, we would typically let the size of each piece be �t =
T � 0

K
• We apply the discretisation scheme on each piece, from x0 at t = 0

x(1�t) = x(0) + f (x(0))�t

x(2�t) = x(1�t) + f (x(1�t))�t

· · · = · · ·

x(k�t) = x((k � 1)�t) + f (x((k � 1)�t))�t

· · · = · · ·

x((K � 1)�t
| {z }

T��t

) = x((K � 1)�t
| {z }

T�2�t

) + f

0

B@x((K � 1)�t
| {z }

T�2�t

)

1

CA�t

x(K�t| {z }
T

) = x((K � 1)�t
| {z }

T��t

) + f

0

B@x((K � 1)�t
| {z }

T��t

)

1

CA�t
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Continuous-time models (cont.)

x(t) = x0 +

Z t

0
f (x(⌧), u(⌧)) d⌧

Consider a tiny time interval �t , then f (x(t), u(t)) is approximately constant in [0,�t ]

x(�t) = x0 +

Z �t

0
f (x(t), u(t)) dt

⇡ x0 + f (x0, u0)

Z �t

0
dt

= x0 + f (x0, u0)�t

The discretisation of infinitesimal dynamics over intervals [t , t +�t ]

x(t +�t) = x(t) +

Z t+�t

t
f (x(⌧), u(⌧)) d⌧

⇡ x(t) + f (x(t), u(t))�t

After we divide the interval in K pieces, the approximation of the evolution of (x(t))Tt=0

x(k�t) = x((k � 1)�t) + f (x((k � 1)�t), u((k � 1)�t))�t (k = 1, . . .K )
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Continuous-time models (cont.)

The inputs are generated by a computer and implemented as piecewise constant signals

Zero-order hold controls

That is, the input u(t) is kept constant between two equally spaced times tk and tk+1

• We define the times when the control is applied as sampling times

• We let the sampling times be {tk = k�t}Kk=0

• �t denotes the (common) duration

The sampling interval �t need not be the same one we used for approximating (x(t))

{x(tk = k�t)}Kk=0

Zero-order holding is the operation of keeping a signal constant for t 2 [tk , tk+1)
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Continuous-time models (cont.)

Suppose that ẋ(t) = f (x(t), u(t)|✓x ) is di↵erentiable and that the inputs are piecewise
constant with fixed values u(t) = uk with uk 2 R

Nu over each interval t 2 [tk , tk+1)

We can treat the transition from state x(tk ) to x(tk+1) as a discrete-time system

• The time in which the system evolves takes values only on a time grid

0 · · · t1 · · · t2 · · · · · · tk�1 · · · tk · · · tk+1| {z }
�t

· · · · · · tK�1 · · · tK

In each interval (tk , tk+1], the solution to the individual IVP exists and it is unique

• With initial value x(tk ) = xinit
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Continuous-time models (cont.)

We consider the initial value problem, x(0) = xini and constant control u(t) = uconst

ẋ(t) = f (x(t), uconst|✓x ) , t 2 [0,�t ]

x(0) = xini

The unique solution x : [0,�t ] 7! R
Nx to the IVP with xinit and uconst is a function

• The arguments are: the initial state xini and the constant control uconst

The solution is the state trajectory over the short interval [0,�t ]

x(t |xini, uconst; ✓x ), t 2 [0,�t ]

The map from pair (xinit, uconst) to process (x(t))�t
0 is denoted as the solution map

The final value x(t = �t |xinit, uconst, ✓x ) of this short trajectory is important

• x(�t) defines the initial state of the next initial value problem

ẋ(t) = f (x(t), uconst|✓x ) , t 2 [�t , 2�t ]

x(�t) = xini
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Continuous-time models (cont.)

We define the transition function that returns the final value x(�t |xini, uconst; ✓x )

f�t : R
Nx ⇥ R

Nu ! R
Nx

The transition function returns the state x(�t |xini, uconst; ✓x ), given xini and uconst

x(�t |xini, uconst; ✓x ) = f�t (xini, uconst|✓x )

f�t is used to define a discrete-time system whose evolution describes the state at {tk}

x(tk+1) = f�t (x(tk ), uk |✓x ) (k = 0, 1, . . .K )

When we discuss general dynamical system, we will often refer to discrete-time systems

• The transition function f�t may be only available implicitly

• Often, we will define it as a computer routine/function
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For linear and time-invariant dynamical systems ẋ(t) = Ax(t)+Bu(t) with x(0) = xinit
and constant input uconst, the solution map x(t |xini, uini, ✓x ) is explicitly known

x(t |xini, uini, ✓x ) = eAtxini +

Z t

0
eA(t�⌧)Buconstd⌧

| {z }
f�t (xini,uconst|✓x )

= eAtxini + Buconst

Z t

0
eA(t�⌧)d⌧

| {z }
f�t (xini,uconst|✓x )

The corresponding discrete-time system with sampling time �t is linear time-invariant

x(tk+1) = A�tx(tk ) + B�tuk| {z }
f�t (x(tk ),uk |✓x )

, (k = 0, 1, . . . ,K � 1)

 A�t = eA�t and B�t = B
R�t
0 eA(�t�⌧)d⌧

Because �t is fixed, also A�t and B�t are fixed (the elements are not function of time)

• LTI continuous-time system (A,B) maps to LTI discrete-time system (A�t ,B�t )
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Discrete-time models

We describe a controlled dynamical system in discrete-time with a di↵erence equation

xk+1 = fk (xk , uk |✓x ) , k 2 N0 K�1

 K + 1 state vectors, x0, x1, . . . , xk , . . . , xK 2 R
Nx

 K input vectors, u0, u1, . . . , uk , . . . , uK�1 2 R
Nu

 Some time horizon of length K

 Parameter vector ✓x 2 R
N✓x

 (Time-varying dynamics)

Given the initial state x0 and all the controls u0, u1, . . . , uK�1, we could recursively call
the functions fk (xk , uk |✓x ) and sequentially obtain all the other states x1, x2, . . . , xK

• This recursion is known as forward simulation of the system dynamics
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Discrete-time models (cont.)

Definition
Forward simulation

The forward simulation of the system dynamics is formally defined as a function

• The argument are x0 and the collection u0, u1, . . . , uK�1

• The image is the collection x0, x1, . . . , xK

That is, we have

fsim : R
Nx+(K⇥Nu ) ! R

(K+1)Nx

: (x0, u0, u1, . . . , uK�1) 7! (x0, x1, . . . , xK )

Function fsim is defined by the recursive solution of the problem

xk+1 = fk (xk , uk |✓x ) (for all k 2 N0 K�1)
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Discrete-time models | LTI

Linear time-invariant systems, LTI

xk+1 = Axk + Buk , k 2 N0 K�1

• x0, x1, . . . , x � K , . . . , xK 2 R
Nx

• u0, u1, . . . , uk , . . . , uK�1 2 R
Nu

• A 2 R
Nx⇥Nx

• B 2 R
Nx⇥Nu

• {A,B} = ✓x 2 R
(Nx⇥Nx )+(Nx⇥Nu )

The forward simulation map of linear time-invariant systems with horizon of length K

fsim(x0, u0, . . . , uK�1) =

2

666664

x0
x1
x2
...

xK

3

777775

=

2

666664

x0
Ax0 + Bu0

A2x0 +ABu0 + Bu1
...

AK x0 +
PK�1

k=0 AK�1�kBuk

3

777775
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Discrete-time models | LTI (cont.)

2

666664

x0
x1
x2
...

xK

3

777775
=

2

666664

x0
Ax0 + Bu0

A2x0 +ABu0 + Bu1
...

AK x0 +
PK�1

k=0 AK�1�kBuk

3

777775

| {z }
fsim(x0,u0,...,uK�1)

Consider the terminal value xK after K steps from x0 and subjected to u0  uK�1,

xK =
⇥
AK�1B AK�2B · · · B

⇤
| {z }

CK

2

6664

u0
u1
...

uK�1

3

7775

Matrix CK is the discrete-time controllability matrix of the linear time-invariant system

• The discrete-time version because based on the discrete pair (A,B)
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Discrete-time models | A�ne

A�ne time-varying systems are an important generalisation of the plain LTI model

A�ne time-varying systems

xk+1 = Akxk + Bkuk + ck , k 2 N0 K�1

• x0, x1, . . . , xk , . . . , xK 2 R
Nx

• u0, u1, . . . , uk , . . . , uK�1 2 R
Nu

• A0,A1, . . . ,Ak , . . . ,AK 2 R
Nx⇥Nx

• B0,B1, . . . ,Bk , . . . ,BK 2 R
Nx⇥Nu

• {Ak ,Bk} = ✓x 2 R
(Nx⇥Nx )+(Nx⇥Nu )

A�ne time-varying systems arise from trajectory linearisations of nonlinear models

xk+1 = fk (xk , uk |✓x )

• Linearisation of nonlinear (and time-varying) dynamics around point (xk , uk )

• We assume the that point (xk , uk ) is a term in a trajectory {(xk , uk )}

• (For example, {x0, x1, . . . , xK } and {u0, u1, . . . , uK�1})
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ẋ(t) = ff (x(t), u(t)|✓x )

In continuous-time, we would approximate (nonlinear and time-varying) dynamics f t

with a first-order Taylor’s expansion around the point (x(t), u(t)) along the trajectory

After defining the deviation variables x 0(t) = x(t) � x(t) and u0(t) = u(t) � u(t),

2

6664

x 0
1(t)

.

.

.
x 0
Nx

(t)

3

7775

| {z }
ẋ0(t)

=

2

666666664

@f t1

@x1
· · ·

@f t1

@xNx

.

.

.
. . .

.

.

.
@f tNx

@x1
· · ·

@f tNx

@xNx

3

777777775

(x(t),u(t))| {z }
At

2

6664

x 0
1(t)

.

.

.
x 0
Nx

(t)

3

7775

| {z }
x0(t)

+

2

666666664

@f t1

@u1
· · ·

@f t1

@uNu

.

.

.
. . .

.

.

.
@f tNx

@u1
· · ·

@f tNx

@uNu

3

777777775

(x(t),u(t))| {z }
Bt

2

6664

u0
1(t)

.

.

.
u0
Nu

(t)

3

7775

| {z }
u0(t)

+

2

666664

f t1
f t2
.
.
.

f tNx

3

777775

(x(t),u(t))| {z }
ct

• At is the Jacobian of f t with respect to x , at (x(t), u(t))

• B t is the Jacobian of f t with respect to u, at (x(t), u(t))

• ct is f t evaluated at (x(t), u(t))
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Discrete-time models | A�ne (cont.)

The a�ne continuous-time approximation expressed in terms of deviation variables,

2

664

x 0
1(t)
...

x 0
Nx

(t)

3

775

| {z }
ẋ 0(t)

=

2

664

at
1,1 · · · at

1,Nx

...
. . .

...
at
Nx ,1 · · · at

Nx ,Nx

3

775

| {z }
(Nx⇥Nx )

2

664

x 0
1(t)
...

x 0
Nx

(t)

3

775

| {z }
(Nx⇥1)

+

2

664

bt1,1 · · · bt1,Nu

...
. . .

...
btNx ,1 · · · btNx ,Nu

3

775

| {z }
(Nx⇥Nu )

2

664

u0
1(t)
...

u0
Nu

(t)

3

775

| {z }
(Nu⇥1)

+

2

6664

ct1
ct2
...

ctNx

3

7775

| {z }
Nx⇥1
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xk+1 = fk (xk , uk |✓)

Similarly, we can approximate nonlinear and time-varying dynamics in discrete-time

We have the a�ne time-varying system,

xk+1 � xk+1| {z }
x 0
k+1

= fk (xk , uk ) � xk+1

⇡
@f

@x

���
(xk ,uk )| {z }

Ak2RNx ⇥Nx

(xk � xk )| {z }
x 0
k

+
@f

@u

���
(xk ,uk )| {z }

Bk2RNx ⇥Nu

(uk � uk )| {z }
u0
k

+ fk (xk , uk ) � xk+1| {z }
ck2RNx ⇥1

The forward simulation map of a�ne time-varying systems, for a horizon of length K

xK = (AK�1 · · ·A0) x0 +
K�1X

k=0

0

@
K�1Y

j=k+1

Aj

1

A (Bkuk + ck )
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Dynamical models and numerical simulations
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Numerical simulations

The design/deployment of optimal controllers depends on the availability of e�cient/
accurate numerical simulation tools that build discretisations of continuous dynamics

We know that the IVP ẋ(t) = f (x(t), u(t)|✓x ) with x(0) = x0 has a unique solution
when f is Lipschitz continuous with respect to x(t) and continuous with respect to t

 A solution exists on the interval [0,T ], even if time T > 0 is arbitrary small

Numerical simulation methods compute approximate solutions to some well-posed IVP

• (Well-posedness is in the sense of the existence/uniqueness theorem)

For practical reasons, numerical simulation methods can be categorised in two groups

• Single-step methods and multi-step methods

Typically, each group is then divided into two main subgroups

• Explicit methods and implicit methods
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Numerical simulations (cont.)

The idea of a numerical simulation method is to compute an approximation to a solu-
tion map x(t |xini, uconst; ✓x ) for t 2 [0,T ], the computation is known as an integrator

 Remember, the function from pair (xini, uconst) to process {x(t)}T0

An intuitive way to compute an approximation for x(t |xinit, uconst; ✓x ) when t 2 [0,T ]

• Perform a linear extrapolation, based on the time derivative of x(t)

• From the initial point xinit, under constant controls uconst
• (The time-derivative is the ẋ(t) = f (x(t), u(t)|✓x ))
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Numerical simulations | Explicit Euler

The approach is an explicit Euler integration step, a good approximation if T is tiny

x(t |xinit, uconst; ✓x ) ⇡ x(0|xinit, uconst; ✓x )| {z }
xini

+ f (xinit, uconst|✓x ) (t � 0)
| {z }

tf (xinit,uconst|✓x )

t 2 [0,T ]

= bx(t |xini, uconst; ✓x )

The error of the explicit Euler integration step is of order T2, it grows as T2 grows

• Or informally, the approximation error is small if T is very small

• The error is directly related to the truncation in the expansion
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Numerical simulations | Explicit Euler (cont.)

The practical implementation of the explicit explicit Euler integration method

We consider a now longer interval with t 2 [0,T ] and we divide it in K subintervals

0 · · · 1 · · · 2 · · · · · · (k � 1) · · · k · · · (k + 1)
| {z }

�t

· · · · · · (K � 1) · · ·K

• Typically, we set each subinterval to have the same time-length

�t =
T

K

• We denote the K time points {tk} as nodes in the time grid

Starting from bx0 = xinit, we then perform K sequential linear extrapolation steps

bxk+1 = bxk + f (bxk , uconst|✓x )�t , k = 0, 1, . . . ,K � 1

For notational simplicity, we set the indexing for k to start from zero

• This allows us to start the sequence with bx0 = xini
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Numerical simulations | Explict Euler (cont.)

Sequentially, the individual integration steps

 k = 0
bx1 = bx0 + f (bx0, uconst|✓x )�t

 k = 1
bx2 = bx1 + f (bx1, uconst|✓x )�t

 · · ·

· · ·

 k = K � 1
bxK = bxK�1 + f (bxK�1, uconst|✓x )�t
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Numerical simulations | Explicit Euler (cont.)

bxk+1 = bxk + f (bxk , uconst|✓x )�t

k = 0, 1, . . . ,K � 1

Explicit Euler (f and �t)

xini, ucont bx(T )

To compute the approximation bxk+1 at node k + 1, an explicit Euler integration only
requires information related to node k , specifically the numerical approximation bxk

• (The method is presented assuming that the dynamics are time-invariant)

The local (at k) approximation error gets smaller with the ‘length’ of the subintervals

• Using smaller (more) subintervals would lead to more accurate approximations

The Euler method is stable as the propagation of local errors is bounded by a constant

kbx(T |xinit, uconst, ✓x ) � x(T |xinit, uconst, ✓x )k| {z }
Accumulated approximation error
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Numerical simulations | Explicit Euler (cont.)

The consistency error of each subinterval is of order (�t)2 and there are
T

�t
subintervals

• The global, accumulated, error at the final time has order (�t)2
T

�t
= T�t

Explicit Runge-Kutta (ERK) methods
The simplest ERK method is explicit Euler

xn = xn�1 + h fn�1

which is consistent of order one. (abbreviate fn := f (tn, xn))

BUT: it is typically not a practical method... Why?
Higher order methods need much fewer steps for same accuracy!

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

Explicit Euler

Number of steps

G
lo

b
a
l e

rr
o
r

8 / 38The error function is linear in the number of function evaluations, slope equal to one
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Numerical simulations | Explicit Euler (cont.)

This would suggest running integration procedures with many small-sized subintervals

 The scheme requires the evaluation of function f (xini, uconst|✓x ) at each step

 Good approximations with many steps require many function evaluations

(Other methods can achieve the desired accuracy levels with lower computational cost)
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Numerical simulations | Explicit Runge-Kutta

The order-4 Runge-Kutta integration method, RK4 generates a sequence of values bxk , by
evaluating (and store) function f four times at each node k , from bx0 = xinit

From approximation bxk and with constant input uconst, at each node k we have

1 = f (bxk , uconst|✓x )

2 = f

 
bxk +

�t

2
1, uconst|✓x

!

3 = f

 
bxk +

�t

2
2, uconst|✓x

!

4 = f (bxk +�t3, uconst|✓x )

Each function evaluation is explicit and performed around the approximation point bxk
• The evaluations are stored as i 2 R

Nx , i 2 {1, 2, 3, 4}

The evaluations are then combined to construct the next approximation bxk+1 point

bxk+1 = bxk +
h

6
(1 + 22 + 23 + 4) , k = 0, 1, . . . ,K � 1
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Numerical simulations | Explicit Runge-Kutta (cont.)

The solution map obtained by using an explicit Runge-Kutta method of order-4, RK4

bxk+1 = bxk +
h

6
(1 + 22 + 23 + 4)

k = 0, 1, . . . ,K � 1

Explicit Runge-Kutta (f and �t)

xini, ucont bx(T )

It can be understood as a continuous and di↵erentiable nonlinear function

• The maximum order of di↵erentiability depends on function f



CHEM-E7225
2023

Dynamical
models

Continuous-time

Discrete-time

Numerical
simulations

Numerical simulations | Explicit Runge-Kutta (cont.)

One step of the RK4 method is as expensive as four Euler steps, though more accurate

• The accumulated approximation error has order T (�t)4

Explicit Runge-Kutta (ERK) methods
The most popular is the following 4th order method

k1 = f (tn�1, xn�1)

k2 = f (tn�1 +
h

2
, xn�1 +

h

2
k1)

k3 = f (tn�1 +
h

2
, xn�1 +

h

2
k2)

k4 = f (tn�1 + h, xn�1 + h k3)

xn = xn�1 +
h

6
(k1 + 2k2 + 2k3 + k4)
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Numerical simulations (cont.)

Summarising, consider a numerical simulation scheme over some time interval [t0, tf ]

• The subintervals have a length �t = (t0 � tf )/K

t0 · · · t1 · · · t2 · · · · · · tk�1 · · · tk · · · tk+1| {z }
�t

· · · · · · tK�1 · · · tK

• The nodes are indexed as k = 0, 1, . . . ,K

• The position of the nodes

tk := t0 + k�t , k = 0, 1, . . . ,K

The solution is approximated at nodes tk by discrete values

bxk ⇡ x(tk |x(t0), uconst; ✓x ) (k = 0, 1, . . . ,K )

Convergence

We define the order-p convergence of a method as worst-case local approximation error

max
k=0,...,K

kbxk � x(tk )k = O ((�t)p)

As K ! 1, we expect that bxk gets closer to x(tk )


