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We combine the notions on dynamic systems and simulation with the notions on non-
linear programming, to formulate a general discrete-time optimal control problem

® We understand and treat them as special forms of nonlinear programs
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Overview (cont.)

Consider a system f which maps an initial state vector zj onto a final state vector xj41

® We also consider the presence of a control u; that modifies the transition
tpp1 = f (o, wel0z), (E=0,1,...,K —1)

‘We consider transitions over a time-horizon, from time £ = 0 to time k = K

Over the time-horizon of interest, we thus have the sequences
~ States {z }_,, with 2, € RNs

~ Controls {uk}f;Ol, with v, € RNu

For notational simplicity, we used time-invariant dynamics f

® In general, we have z; 1 = fi (zx, uk|0z)
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py1 = f (g, ugl0z), (k=0,1,...,K —1)

Semmlkicnmon The dynamics f are often derived from the discretisation of a continuous-time system
S p— ® As result of a numerical integration schemes, under piecewise constant controls
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Overview (cont.)
Tpr1 = [ (@, uglls), (k=0,1,...,K —1)

Given an initial state zp and any sequence of controls {uk}ngol, we know all the states
The forward simulation function determines the sequence of states {3 }X_
fuim : RNeH(EXN) _y (K+1)Ns

¢ (20, uo, U1, .-, uk —1) — (20, %1, - - ., TK)

For arbitrary systems, the forward simulation map is built recursively

To = To
x1 = f (20, o)
w2 = f (21, w1)
=f (f (z0,u0), u1)
z3 = f (22, u2)

=f(f (f (z0,u0),u1), uz)
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Overview (cont.)

xk+1:f(xk7uk‘ez)7 (kzovlszil)

In optimal control, the dynamics can be used as equality constraints in optimisation

In this case, the initial state vector zp is not necessarily known, or fixed
® It can be one of the decision variables to be determined

® Moreover, certain constraints would apply to it

Similarly, also the final state zx can be treated as decision variable in an optimisation
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Overview (cont.)

Initial and terminal state constraints
We express the constraints on initial and terminal states in terms of function r (2o, zx )

r: RNe+Ne _y R Nr

‘We express the desire to reach certain initial and terminal states as equality constraints

r(20,2K) =0

For fixed initial state zg = Zo, we have
r (20, TK) = 20 — Zo
For fixed terminal state zx = Tx, we have

(20, 2K) = TK — Tk

For fixed both initial and terminal states, 1o = Tog and zx = Tg, we have

xo—i’o}
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For fixed both initial and terminal states, o = To and zx = Tg, we have

Sequential approach

QG
méz)ffm

2V _ (o)

r(z0,TK) =
20 _ 5
}é) )

(%) _ 5]

N, x1
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We can express certain constraints on arbitrary state and control values, z; and wuyg

® These constraints often represent certain technological restrictions

Sequential approach

® They are expressed in terms of inequality constraints

® The main idea is to use them to avoid violations
h(zg,ur) <0, k=0,1,...,K—1

For notational simplicity, we used time-invariant inequality constraint functions h

For upper and lower bounds on the controls, upyin < ugp < Umax, we have

U, — Umax
h (z, u) = |:’u,min - uk]

For upper and lower bounds on the states, Zmin < 2z < Tmax, we have

Tk — Tmax
o) = [ o]
min
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o For upper and lower bounds on the controls, umin > U > Umax, We have

Sequential approach

W,
2 — ui
— 1l /=
L o =l
u | | I
S R h (@, up) =
S — ull) )
: : : : : : : : [ (&)
tU tl tQ tg t4 t5 tﬁ t7 tg tg Upnin Uy,
W) _ ()|

- “min
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) . . For upper and lower bounds on the states, Zyin > Tt > Tmax, we have
Sequential approach

[ $]§1) - :l:r(nla?x 1
2 — i
N .
fc,i ) — o

h (z, ug) =

o) — ol
(2 2
F_e®

min

(Na) . (V2)
X 71‘]6 i

L“min



Problem formulations

Discrete-time optimal control
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‘We have the system dynamics and the specifications on the state and control constraints

We use them to formulate the control problem, as constrained nonlinear optimisation

TQ, L1y TR
U, UL 5e ey UK — 1

subject to  zp41 — f (z, ukl0:) =0, k=0,1,...,K —1
h (@, ui,) <0, k=0,1,..., K —1
r (20, 2x) =0

K—-1
min E (k) + Y L(wg,u)
k=0
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K—1
o, i B (zk) + > L(w, u)
UQ UL 5oy UK — 1 k=0

subject to  zp41 — f (zk, uk|0z) = 0,
h (@, uy) <0,
7 (20, 2K) =0
The objective function, two terms

K-1

> L(zk,w) + B (ax)

k=0
The decision variables, two sets
Z0;x1y -y TK—1,TK
U, ULy -+ o5 UK 1
The equality constraints, two sets
op1 — f (2, wglz) =0
r (2o, 2x) =0

The inequality constraints

(k=0,..

LK - 1)

K-1

LK -1
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Formulations ZO,zIRiP,zK E (2k) + Z L (g, ug)
S O UK k=0
Seauential approach subject to Tpi1 — f (z, ugl0z) =0, k=0,1,... K —1
h(a:huk)g(), kZO,l,...,K—l
r (20, 2x) =0

The objective function is the sum of all stage costs L (zk, ur) and a terminal cost E (zx)

K—-1

> Lo, w) + E (k)

k=0

f(w)eR
That is,

L(zo,u0) + L(z1,w1) + - + L(zx—1,ux—1) + E (2K)
Stage cost is a (potentially nonlinear and time-varying) function of state and controls
The decision variables, K X Ny control and (K + 1) x N, state variables

(w0, %1, -+, TR —1, Tk ) U (w0, U1, - - -, UK 1)

MGRKXNqu(KJrl)XNm




P Problem formulations (cont.)
2023

Formulations

K—-1
Simultaneous min E (zx) + Z L (xx, ug)
k=0

approach TO,T] e TR
Sequential approach UQ, ULy UK —1

subject to  zp41 — f (zk, ukl0:) =0, k=0,1,...,K—1
h (zg, ux) <0, k=0,1,...,K -1

r(20,2x) =0

The equality constraints, the K dynamics and the N, boundary conditions

g1 — f (@, ug|0z) =0 (k=0,..., K —1)

7 (@0, zx) =0

g(w)eRrNg

The inequality constraints

h(w)ERNn
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K-1
i 0 B0+ D Lo )
UQ, UL - UK — 1 k=0

subject to  zp41 — f (zk,ukl0:) =0, k=0,1,...,K—1
h (zg, wx) <0, k=0,1,...,K —1
r(2o0,2x) =0

The discrete-time optimal control problem is a potentially very large nonlinear program

® In principle, its solution can be approached using any generic NLP solver

We discuss the two approaches used to solve discrete-time optimal control problems
® The simultaneous approach

® The sequential approach



The simultaneous approach

Problem formulations
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T, L1 5, LI
UQHUL - UK — 1
subject to  zp41 — f (2, ukl0:) =0, k=0,1,..., K —1
h (25, w;) < 0, k=0,1,...,K—1

r(z0,7K) =0

K—1
min E (zx) + Z L (g, ug)
k=0

The simultaneous approach solves the problem in the space of all the decision vars
w = (20, U0, T1, U1, - - -, TK—1, UK —1, TK )

Thus, there are (K x Ny) + ((K + 1) X N;) decision variables
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L (w, A ) = f (w) + AT g (w) + " h (w)

The Karush-Kuhn-Tucker conditions,

Vi (w*) 4+ Vg (w*)A\* + Vh (w*)p* =0
g(w*)=0
h(w*) <0
p* >0
By By (W) =0, np=1,..., Ny
If point w* = (x5, us,. ., Tk _q1,uj_q,Zj) is a local minimiser of the nonlinear pro-

gram and if LICQ holds at w*, there there exist two vectors, the Lagrange multipliers
X € RNo and o € RNk, such that the Karhush-Kuhn-Tucker conditions are verified
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. 4
SQP lter: 10 1
x 0,
of
= , 0
= “o 05 1 15 2 0 05 1 15 2
3 o
<)
S 4 4
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Sequential approach
K—1
min E(zx) + L (xx,w
0o, A0 (ex) + D L(aw,w)
UQ UL 5oy UK — 1 k=0

subject to  xp41 — f (2, ukl0:) =0, k=0,1,..., K —1

r (@0, 2x) =0

This optimal control problem in discrete-time has no inequality constraints
® Inequality constraints are omitted for notational simplicity

The objective f (w) = E (zx) + Zf;ol L (x, u) of the decision variables,

w = ($0,u0,$1,u1,...,23K71,UK71,$K)
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K—-1
E(zx) + ) L(ag, w)
}=0

min
ZO,T] - TR
Simultaneous UQ UL 5y UK — ]
approach
Sequential approach subject to Tpp1 — I (l’k, ’U«k|ez) =0, k=0,1,...,K—1

r(z0,zx) =0
We define the equality constraint function by concatenation
[ g1 (w)
g2 (w)
g9(w) =

Lo, (w)

z1 — f (20, uo)
z2 — f (@1, w1)

o — f (2 -1, uK 1)

L 7 (20, Tx) J

((KXNg)+Np)x1
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ZO,TL 5 TK
UQHUL - UK — 1

Sequential approach

K—1
A min E (zx) + Z L (zg, ug)
k=0
subject to  xp41 — f (zk, uk|0:) =0, k=0,1,..., K —1
r (@0, 2x) =0

The Lagrangian function for equality constrained problems,

L(w)=f(w)+A"g (w)

The equality multipliers,
A= (Ala)\27~'~7>\K7>\N7—)

The KKT conditions,

Vuwl (w,A) =0
g(w)=0
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Simuliansous 71 — f (20, uo0)
e 22 — f (z1,u1)
Sequential approach

P A o Ak ] o —f (Tx -1, uK 1)

AT

| oo |

g(w)

After expanding the terms in the inner product, we re-write the Lagrangian function

L(w,\) =

K-1 K—1
E(zx)+ Y L(mk,ur)+ (Z A1 (F (s wg) — 1) + Aﬁﬂ“(mﬂ%))
k=0 k=0

f(w) AT g(w)
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a1 — f (o, u,) =0

More explicitly, we have

[ x,ﬁi’l — A (zg,ug) 0
2
SE,£+)1 — fo (g, ug) 0
o)~ fog (opow) | |0
! 0
_x,if’i) — fn, (@, ug) |

Ny x1
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Problem formulations | Simultaneous approach (cont.)

Consider the corresponding product with the equality multiplier,

Ag+1 (f (Zp> wk) — opg1)
— ——

Ny x1
1x1
More explicitly, we have
[ I;%_)l — f (zg, ug) |
E,Eﬁl — fo (zx, ug)
1 2 ng Ny
M A& e AR e

Tpy1 — fra (@, ur)
1X Ny .

_fﬂ;gfﬁ) — I, (@, uk) ]

Ny x1
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Similarly, consider the boundary constraint,

Simultaneous
arronch r(z0,2x) =0

Sequential approach

In more detail, we have,

- :Eél) —T(()l) -
1’(52) _582)

a{Ne) _ )

7 (zo,zN) =
(1) _Z(n)

K
ZI((Q) — T{E)

T

2o _ 50|

Ny x1
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For the product )‘JTL r (20, ¢x ) with the equality multiplier, we have

AN, 7 (20, 7K )
~

1xN, Nrx1

- :Eél) —5(()1) -
z(gQ) —E(()Z)

(N _ (V=)

[ ——
1x1
More explicitly, we have
[AS\}) /\EVJZT) AEVI\:TH) AS\?TN’)]
1X N

o) -
NN

o) _ (o)

N, x1
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For the Lagrangian function for equality constrained problems, we thus have

A1 A2 .. Ax A,
E(w,)\):f(w)-i- ~~ ~~ ~~
NI 1XN; 1xN, 1XNz  1xN,
1x1
)\T
N~
1X ((K X Ng)+Nr)

z1 — f (20, uo0)

—_——
Nz x1

22 — f (@1, u1)

—_—

Nz x1

o —f (Tx—1, uK 1)

Nz x1

r (w0, Tx)

Np-x1

g (w)

((KXNg)+Nr)x1
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Sequential approach
The second KKT condition,
Ik+1_f(xk7uk‘):0 (k:07"'7K_1)
r(z0,zx) =0

The first KKT condition regards the derivative of £ with respect to the primal vars w

w = (20, U0, T1, UL, - - -, TK—1, UK —1, TK )

The Lagrangian function in structural form,

K—1 K-1
E(zk)+ Y Lz, w)+ <Z Alr (F (s i) — @) + Aﬁ,_T(ﬂEo,ﬂcK))
k=0 k=0

f(w) AT g(w)

L(w,N\)
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g(w)=0

Simultaneous

approach
o For the second KKT condition, we have

Sequential approach

k41 — f (2, up) =0 (k=0,...,K —1)
r(zo,zx) =0

That is,

[ z—f(z0,w) 1 ¢ -

Nz x1 Ny x1

22 — f (71, 1) 0

~—

Ny x1 Ny x1

g — f (zx—1,ug—1)| ~ | 0

Ny x1 Nz x1

r (20, 2K) \O/
L Nox1 i LN, x 1
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S— VLl (w,\) =0

approach
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Consider the gradient of the Lagrangian function, it is a concatenation of gradients

[ Vi £(w,A) ]
Vay £ (w,\)

Vi £ (w,\)
VL (w,\) =

Vg £ (w, X)
Vo L (w, X)

_V“K—I‘C’ (w7 )‘)_

For the second KKT conditions, it is necessary to determine/evaluate the derivatives
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K—

K—1
ER— E(zx) + Z (T, uk) + <Z A1 (f (@, ug) — 1) + AR, 7 (20, xK))
k=0

approach

Sequential approach

L(w,\)

The derivatives of the Lagrangian function with respect to the state variables xj

® For k = 0, we have

Bf (z0,up) T ar (zo, xx) T
Vzoll(wv)\)vagL(moﬂo)-‘r ( ) A1+ ( ) )\N,»
Oxo Oz
® For k=1,...,K — 1, we have
Of (wp, up) ™

Vzk[l(w,)\) = Vsz(fl)k, uk) + (T;C)/\k+1 — Ak

® For k = K, we have
ar (zo,2x) T
Vo £ () = Var B (o) — Mg + 2 E026)

Oz
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Consider the generic term Vg, £ (w, A),

[OL (w, \)]

8x,§1)
oL (w, )

Vo £(w )= | 0

L (w, \)
81,§Nz)

Nz x1
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Consider the derivative of the dynamics,

af (Z‘k, uk:)
oy,
Remember the dynamics,
[ fi (Ilgl)v B l‘f({NI)v uk) |

f (@, ue) = | fng (96;51)

e

(Nz)
yees Ty U

N,
7"‘1z}(( I),uk)
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Sequential approach For the derivative of the dynamics, we have

of (z,gl), R xlgN’), uk)

oz,

[ of (:r,gl), ey :EIEN”), uk) ]
oxy,

o (50,20 1)
oy,

Ofn, (:r,il), . . :E,EN”), uk)

L amk J
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In more detail, we have

of (zn, u)
oxy, -

[ Ofi (zn,ur)  Ofr (w, ur)
1 (2
8x( ) Oz, )
Of2 (l'lm ug)  Of2 (zg, wg)
1 @
Bxlg ) Oz,

Ofn, ('xk, up)  Ofn, (.Ilm uy,)

Baclil) 8x152)

Oft (Tk, uk) T

az(NT

Ofe ($k7 uy,)
31:,51\]@)

Afn, (.Ik» uy,)

6x]£N“)

Nz X Ny

For the product with the equality multiplier, we get

af (zkz Uk) T
- a4 )\kJrl
oxy,

——
——— N, x1
Ny X Ny

Ny x1
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Consider the derivatives of the boundary conditions, we have the terms

~
or (20, Tk )

Simultaneous -~

approach 6:130

Sequential approach ~~y
or (20, K )
Ozk
Remember the boundary constraints
OOy

Z 0
(2) (2)

QZO - IO

2{Ne) _ (=)

T (70, 7K) =
T
mﬁ?) — 5}?)

L) L

N, x1
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For the derivative of the boundary constraints with respect to zp, we have

Simultaneous
approach

Sequential approach

or (:rél), 1:32), e xéN’”),:nK)

ory ([Eél), 152), e xéNm), zK) ]
Oxg

Ory (xél)7 zé2), e a:éNI), :EK)
Oxg

orn, (zél), xéQ), e xéN”), xK>

Oxg

Oxp

OTN, +1 (zél), zéQ), ..

. zéNZ), zK)

1 a210 N,
OTN, +2 <xé ),:ré ),,..,:ré ”),IK>
Oxo
oran, (mél),zé2),...,zéN’),mK)

Oxg
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Problem formulations | Simultaneous approach (cont.)

In more detail, we have

or (0, Tk )
Oxg

or1 (zo0, TK) or1 (20, Tk )
896(51) 81:52)

O (0, TK ) Ora (20, TK)
Bxém 83052)

oran, (w0, 7))  Oran, (w0, TK)

Bx(gn 82652)

or1 (20, zK) ]

Ba:éNI)
Ora (20, TK)

BacéN")

dran, (w0, Tx )

Ba:éN")

2Ny X Ny

For the product with the equality multiplier, we get

or (zo, xK)T

Ak+1
Oz N—~—
2N, X1

Ny X 2N,

Nz x1
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K- K-1
E(zk) + Z (T, u) + <Z At (f (o ug) — ogn) + Af;j(ﬂ:o&}())
k=0 k=0

L(w,\)

The derivatives of the Lagrangian function with respect to the control variables ug
® For k=0,...,K — 1, we have

af (s, w) "

Ve £ (w,\) = YV, L (zg, ug) + Dur

Ak+1
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VLl (w,A) =0
g(w)=0

We can collect all the KKT conditions and solve them using a Newton-type method

® The approach solves the problem in the full space of the decision variables
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The approach can be extended to more general discrete-time optimal control problems

Simultaneous
approach .
min
TO,T1 5 TR
UQ, UL 5e s UK — 1

Sequential approach

subject to

K—1
E(zk)+ Y Li (zh, w)
k=0
Tpy1 — fr (@, up|0z) = 0, k=
by (zx, ur) <0,
K—1

Ri (zx) + Y 7k (ax,up) =0
k=0

hi (zx) <0

All problem functions are explicitly time-varying and we have also a terminal inequality

® Moreover, the boundary conditions are expressed in general form

By collecting all variables in the vector w, we have the complete Lagrangian function

L (w,\ 1) = f (w) +ATg (w) + p"h (w)



The sequential approach

Problem formulations
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K
S min E (zk) + L (p, ug)

T, T1 50, TR
UQ, UL yee e UK — 1 k=0

|
-

approach

Sequential approach

subject to  zp41 — f (zk, uk|0z) =0,
h (Zka uk) S 07
r(zo,zy) =0

=0,1,...,K—1

k=0,1,..., K —1

The sequential approach solves the same problem in a reduced space of variables

The idea is to eliminate all the state variables z1, za, ...

0 =m0

z1 = f (20, o)

z2 = f (71, u1)
=f(f (20, u0) ,w1)

z3 = f (%2, u2)

,zx by a forward simulation

:f(f (f (iEO,UO),Ul),Ug)
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We can express the states as function of the initial condition and previous controls

0= a0
Simultaneou
approach %o (20)
Sequential approach
x1 = f (20, o)
——
Z1(%0,u0)
w2 = f (21, 1)
= f (f (20, w0) , u1)
S ——
T (20,u0,u1)
z3 = f (%2, u2)

:f(f (f (:z:o,uo),ul),uz)

T3 (z0,u0,u)1,u2)

More generally, the dependence is on all the control variables and the initial condition

To (o, U0, U1, - .-, UK —1) = T0

Tiy1 (20, uo, ut, ..., ug—1) = f (Te (20, w0, w1, ..., ug—1),ux), k=0,1,...,K—1
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Simultaneous

approach K-—1
Skl prpred usouf?mu?(_l E (ax) + > L (2, ue)
subject to  zp41 — f (2, ukl0:) =0, k=0,1,...,K—1
h (z, ug) <0, k=0,1,..., K —1
r(zo0,zy) =0

We can re-write the general discrete-time optimal control problem in reduced form

K—1
min E Tk (20,u0,u1, -, uk—1)) + ¥ LTk (20, u0, w1, ., ux 1), up)
UQ UL 5ee ey UK — 1 k=0
subject to  h (Ty (20, uo, u1,...,ux—1),ux) <0,k=0,1,..., K —1
7 (20, TN (70, U0, U1, -+, UK 1)) =0
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K—-1
Simultaneous Inw(l)l’l E (EK (1:07 UQ, Ul .- -, uK—l)) + Z L(Ek ($07 UQ, UL, - - -, uK—l) ) uk)
approach U, UL 5ee ey UK — 1 k=0
Sequential approach
subject to  h (Ty (20, uo, v1,...,ux—1),ux) <0,k=0,1,..., K —1
7 (20, TN (20, w0, U1, ..., ug—1)) =0

The objective function, sum of stage costs L (T, ug) and a terminal cost E (Tg)

K-1

> L@k, wm)+ E (k)

k=0

f(w)erR
That is,
L(w0,u0) + L(T1,w1) + -+ L(Tk-1,ux—-1) + B (Tk)

Stage cost is a (potentially nonlinear and time-varying) function of state and controls
The decision variables, K X N, control and N; state variables

(20) U (uo, w1, ..., ux—1)

weERK X Nu+Ng
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Simultaneous

approach

K—1
o pe— n;(i)n E (Tk (zo,uo,u1,...,ux—1)) + Z L (ZTk (20, uo, Ul ..., UK —1), Uk)
UQ,UL 5oy UK —1 k=0
subject to  h (Ty (70, uo, u1, ..., ux—1),ux) <0,k=0,1,..., K — 1
7 (20, TN (70, U0, U1, -+, UK 1)) =0

The equality constraints, the N, boundary conditions

r(20,Tg) =0

g(w)G'RNg

The inequality constraints

h(fk,uk)go (kZO,l,...,K—l)

h(w)ERNL
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K-1
i e min E (T (20, w0, u1,- . uk 1)) + > L(T (20,0, w1, ., ux 1), up)
Sequential approach UQsUL 5 UK —1 k=0
subject to  h (Tg (20, uo, u1,...,ux—1),ux) <0,k=0,1,..., K — 1
(20, TN (70, U0, U1, ..., ux—1)) =0

The Lagrangian function of the problem,

L(w,\p) = f(w) +A"g (w) + p"h(w)

The Karush-Kuhn-Tucker conditions,

Vf (w*) = Vg (w*)A" = Vh (w")u* =0
g(w™) =
h(w*) >0
w20
By by, (W) =0, mp =1,..., Ny
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Problem formulations | Sequential approach (cont.)

u [N]

SQP lter: 0 4
1
20 T 0,
o
10 A 0
o o5 1 15 o o5 1 15
0 5 5
5
-10) . A
i 6°
20 5
0 e (5] s I TR 15 % o5 1 s
1me s Time [s] Time [s]
SQP lter: 1 4\/\
’ j
20 z \/\ 6 >
0 k)
10 4 0
o 05 1 15 o 05 1 15
o |
5 5
-10 1. : o)
%\/\// p 0\/\/,
20 5 ;
0 i (5] 8 2 % 05 1 5 % o5 1 15
me |s Time [s] Time [s]
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Problem formulations | Sequential approach (cont.)

SQP lter: 16 4
1
20 x 0,
0 D
10 1 4 0 3
— o 05 1 15 2 o o5 1 15 2
7.
[ 1 5
= 5 5
10 g . A
Zg N0 Ow\
20 -5
0 * i 5] 8 2 o5 i s 2 % o5 1 15 2
me |s Time [s] Time [s]

For computational efficiency, it is preferable to use specific structure-exploiting solvers

® Such solvers recognise the sparsity properties of this class of problems
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