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The LQR from the HJB

Consider a linear time-varying dynamical system, with initial condition x(t0) = x0,

ẋ(t) = A(t)x(t) + B(t)u(t)
| {z }

f (x(t),u(t),t)

The cost to transfer the state x(t0) to x(T ) using control u(t) with t 2 [t0, tf ],

1

2
x(tf )

T
Qf x(tf )

| {z }
E(x(tf ))

+
1

2

Z tf

t0

x(t)TQ(t)x(t) + u
T (t)R(t)u(t)

| {z }
2L(x(t),u(t),t)

dt

 Q(t) = Q
T (t) ⌫ 0

 R(t) = R
T (t) � 0

 Qf = Q
T
f ⌫ 0

The quadratic cost is very reasonable, since both Q and R are positive (semi)definite
matrices, both the size of the state vector and the size of the control vector are penalised

• Matrices Q and R retain their relative relevance

We are interested in the optimal control u⇤(t), for all t 2 [t0, tf ]

 From the Hamilton-Jacobi-Bellman equation, we have

u
⇤(t) = u

⇤
 
x(t),

@J⇤ (x(t))

@x

!

CHEM-E7225

2023

The LQR from the HJB (cont.)

We defined the Hamilton-Jacobi-Bellman equation, as the partial di↵erential equation

@J⇤ (x⇤(t))

@t
+H

 
x
⇤(t), u⇤(t),

@J⇤ (x⇤(t))

@x⇤

!

| {z }
Optimal value of the Hamiltonian

= 0

It contains the partial derivatives of the value function with respect to state and time

The HJB PDE is integrated backwards, from the boundary condition

• The terminal stage-cost

J
⇤ �

x
⇤(tf ), tf

�
= E

�
x
⇤(tf )

�

The terminal cost does not appear in the HJB PDE itself

Solving the HJB equation analytically is a challenging task, even for simple problems

The solution of the HJB equation is the value function,

J
⇤ (x(t), t) x(t) 2 X t 2 [0,T ]
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The LQR from the HJB (cont.)

@J⇤ (x⇤(t))

@t
+H

 
x
⇤(t), u⇤(t),

@J⇤ (x⇤(t))

@x⇤

!

| {z }
Optimal value of the Hamiltonian

= 0

In the Hamilton-Jacobi-Bellman equation, we defined the Hamiltonian,

H

 
x(t), u(t),

@J⇤ (x(t))

@x

!
= L (x(t), u(t)) +

"
@J⇤ (x(t))

@x(t)

#T
f (x(t), u(t), t)

For linear time-varying systems in continuous-time and quadratic costs,

H

 
x(t), u(t),

@J⇤ (x(t))

@x(t)

!
=

1

2

⇣
x
T (t)Q(t)x(t) + u

T (t)R(t)u(t)
⌘

| {z }
L(x(t),u(t),t)

+

"
@J⇤ (x(t))

@x(t)

#T
(A(t)x(t) + B(t)u(t))
| {z }

f (x(t),u(t),t)
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The LQR from the HJB (cont.)

H

 
x(t), u(t),

@J⇤ (x(t))

@x(t)

!
=

1

2

⇣
x
T (t)Q(t)x(t) + u

T (t)R(t)u(t)
⌘

+

"
@J⇤ (x(t))

@x(t)

#T
(A(t)x(t) + B(t)u(t))

The optimal value of the Hamiltonian is obtained from first-order optimality conditions,

@H

 
x(t), u(t),

@J⇤ (x(t))

@u

!

@u
= 0

Di↵erentiating the Hamiltonian with respect to u(t), we get

R(t)u(t) + B
T (t)

"
@J⇤ (x(t))

@x(t)

#T
= 0
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The LQR from the HJB (cont.)

R(t)u(t) + B
T (t)

@J⇤ (x(t))

@x(t)
= 0

The gradient of the Hamiltonian witch respect to u(·) must vanish along the trajectory

From the first-order optimality conditions, we solve for the optimal control and get

u
⇤(t) = �R

�1(t)BT (t)
@J⇤ (x(t))

@x(t)

• We used the assumption that R(t) is invertible
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The LQR from the HJB (cont.)

H

 
x(t), u(t),

@J⇤ (x(t))

@x(t)

!
=

1

2

⇣
x
T (t)Q(t)x(t) + u

T (t)R(t)u(t)
⌘

+

"
@J⇤ (x(t))

@x(t)

#T
(A(t)x(t) + B(t)u(t))

We get the optimal value of the Hamiltonian, by substituting the optimal control u⇤(t)

u
⇤(t) = �R

�1(t)BT (t)
@J⇤ (x(t))

@x(t)

We get,

H (x(t), u(t),
@J⇤ (x(t))

@x(t)
) =

1

2
x
T (t)Q(t)x(t)

+
1

2

"
@J⇤ (x(t))

@x(t)

#T
B(t)R�1(t)R(t)R�1(t)BT (t)

@J⇤ (x(t))

@x(t)

+

"
@J⇤ (x(t))

@x(t)

#
A(t)x(t)

�
"
@J⇤ (x(t))

@x(t)

#T
B(t)R�1

B
T (t)

@J⇤ (x(t))

@x(t)
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The LQR from the HJB

After grouping terms and rearranging, we get the optimal value of the Hamiltonian

H

 
x(t), u(t),

@J⇤ (x(t))

@x(t)

!
=

1

2
x
T (t)Q(t)x(t)

�
1

2

"
@J⇤ (x(t))

@x(t)

#T
B(t)R�1

B
T (t)

@J⇤ (x(t))

+
@x(t)

+

"
@J⇤ (x(t))

@x(t)

#T
A(t)x(t)
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The LQR from the HJB (cont.)

@J⇤ (x⇤(t))

@t
+H

 
x
⇤(t), u⇤(t),

@J⇤ (x⇤(t))

@x⇤

!

| {z }
Optimal value of the Hamiltonian

= 0

Given the optimal value of the Hamiltonian, we can re-write the HJB equation

@J⇤ (x⇤(t))

@t
= �

1

2
x
T (t)Q(t)x(t) +

1

2

"
@J⇤ (x(t))

@x(t)

#T
B(t)R�1

B
T (t)

@J⇤ (x(t))

@x(t)

�
"
@J⇤ (x(t))

@x(t)

#T
A(t)x(t)

The boundary condition is given by the terminal stage-cost,

J
⇤ �

x
⇤(tf ), tf

�
=

1

2
x
T (tf )Qf x

⇤(tf )
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The LQR from the HJB (cont.)

Assume that the Hamilton-Jacobi-Bellman has a quadratic solution in the state,

J
⇤ (x(t), t) =

1

2
x
T (t)P(t)x(t)

The candidate solution mimics the quadratic form of the boundary condition,

J
⇤ �

x
⇤(tf ), tf

�
=

1

2
x
T (tf )Qf x

⇤(tf )

• P(t) = P
T (t) ⌫ 0, as the cost must be non-negative

By taking the partial derivative of the candidate solution with respect to time, we get

@J⇤ (x(t))

@t
=

1

2
x(t)Ṗx(t)

Similarly, by taking the partial derivative with respect to the state we get

@J⇤ (x(t))

@x
= P(t)x(t)
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The LQR from the HJB (cont.)

After substituting the partial derivatives in the Hamilton-Jacobi-Bellman equation,

1

2
x
T (t)Ṗx(t)
| {z }

quadratic in x(t)

+
1

2
x
T (t)Q(t)x(t)
| {z }
quadratic in x(t)

�
1

2
x
T (t)P(t)B(t)R�1(t)BT (t)P(t)x(t)
| {z }

quadratic in x(t)

+ x
T (t)P(t)A(t)x(t)
| {z }

quadratic in x(t)

= 0

• Ṗ(t) is symmetric

• Q(t) is symmetric

• P(t)B(t)R�1(t)BT (t)P(t) is symmetric

• Matrix P(t)A(t) is not necessarily symmetric
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The LQR from the HJB (cont.)

For any (not necessarily symmetric) state matrix A, we have

A = A1|{z}
symmetric

+ A2|{z}
skew-symmetric

Then, we can write

A1 =
A+A

T

2

A2 =
A�A

T

2

We re-write P(t)A(t) in x
T (t)P(t)A(t)x(t)

P(t)A(t) =
1

2

⇣
P(t)A(t) + (P(t)A(t))T

⌘

| {z }
symmetric

+
1

2

⇣
P(t)A(t)� (P(t)A(t))T

⌘

| {z }
skew-symmetric

In the quadratic form, the skew-symmetric part will vanish
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The LQR from the HJB (cont.)

After substituting P(t)A(t) with
1

2

⇣
P(t)A(t) + (P(t)A(t))T

⌘
in the HJB, we get

1

2
x
T (t)Ṗ(t)x(t) +

1

2
x
T (t)Q(t)x(t)�

1

2
x
T (t)P(t)B(t)R�1(t)BT (t)P(t)x(t)

+
1

2
x
T (t)P(t)A(t)x(t) +

1

2
x
T (t)AT (t)P(t)x(t) = 0

That is, we have

1

2
x
T (t)

⇣
Ṗ(t) +Q(t)� P(t)B(t)R�1(t)BT (t)P(t) + P(t)A(t) +A

T (t)P(t)
⌘
x(t)

= 0

As a result, for any x(t) we get the matrix ordinary di↵erential equation for P(t)

Ṗ(t) +Q(t)� P(t)B(t)R�1(t)BT (t)P(t)A(t) + P(t)A(t) +A
T (t)P(t)

= 0
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The LQR from the HJB (cont.)

The matrix di↵erential equation is the matrix di↵erential Riccati equation

Ṗ(t) = �P(t)A(t)�A
T (t)P(t) + P(t)B(t)R�1(t)BT (t)P(t)�Q(t)

The boundary condition P(tf ) is the terminal state weight-matrix Qf

Once matrix P(t) is determined along the trajectory, we get the optimal control

u(t) = �R
�1(t)BT (t)J⇤ (x(t), t)

= �R
�1(t)BT (t)P(t)x(t)

= �K (t)x(t)

The optimal control is given in linear state feedback form

• The time-varying feedback gain,

K (t) = R
�1(t)BT (t)P(t)

• (Also for LTI systems)

A remarkable conclusion, though we did not prove the global optimality of the control


