CHEM-E7225
2023

CHEM-ET225
2023

Al

Aalto University

LQR from HJB

CHEM-E7225 (was E7195), 2023

Francesco Corona (—-—)

Chemical and Metallurg Engineering
School of Chemical Engineering

The LQR from the HJB (cont.)

‘We defined the Hamilton-Jacobi-Bellman equation, as the partial differential equation

J* (=~ (1)) aJ* (z*(t))> —0

ot

+H <x*(t), wt (1), =

Optimal value of the Hamiltonian
It contains the partial derivatives of the value function with respect to state and time

The HIB PDE is integrated backwards, from the boundary condition

® The terminal stage-cost
J* (x*(tf), tf) =F (Z*(tf))

The terminal cost does not appear in the HJB PDE itself

Solving the HIJB equation analytically is a challenging task, even for simple problems
The solution of the HJB equation is the value function,

J*(x(t), ) z(t) e X teo,T)
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Consider a linear time-varying dynamical system, with initial condition z(tp) = Zo,

z(t) = A(t)z(t) + B(t)u(t)
—_ —
Fa(t),u(t),t)
The cost to transfer the state z(tp) to 2(T') using control u(t) with ¢ € [to, t7],

1 T 1 1Y T e

5207 Q) +5 [ 2 QW (t) + uT(ORWu(t) d
W 0 2L(z(t)u(t), 1)

- Q)=QT(t) =0
~ R(t)=RT(t) =0
~ Qf = QfT =0

The quadratic cost is very reasonable, since both @ and R are positive (semi)definite
matrices, both the size of the state vector and the size of the control vector are penalised
® Matrices @ and R retain their relative relevance

We are interested in the optimal control uw*(¢), for all ¢ € [to, t]
~~ From the Hamilton-Jacobi-Bellman equation, we have

aJ (z(t))>

u*(t) = u* (z(t), 52
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aJ* (™ (1))

ot

+H (z*(t), u* (1), w> =0

Optimal value of the Hamiltonian
In the Hamilton-Jacobi-Bellman equation, we defined the Hamiltonian,

i (x(o,u(t), W) = Lia(t), u(®) + [

a7 (z(1)] "
T(t):| f(m(t),u(t),t)

For linear time-varying systems in continuous-time and quadratic costs,

= L (+" Q=) + uT (HRWu)

H <x(t)yu(t)’w> 5

oz (t)

Lz (t),u(t),t)

a7 (z()] "
+ [W} (A(®)a(t) + B(t)u(t)

f(@(8),u(t),t)
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H <z(t),u(t),%(xt()t))> = ;( () Q(®)a(t) + uT () R(t)u(t))

a7 (z()] "
[W} (A(®)a(t) + B(t)u(t))

The optimal value of the Hamiltonian is obtained from first-order optimality conditions,

J* (z(t)))
=0

OH <av(t),u(t)7 Em

ou

Differentiating the Hamiltonian with respect to u(t), we get

07" (x(t»} ",

R(t)u(t) + BT (t) [ 0
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aJ* (z(t))

H (z(t), u(t), 92(0)

) = 2 (="MW= + T W RE(D)

a7 (z(t)] "
[T(t)} (A(t)z(t) + B(t)u(t))

‘We get the optimal value of the Hamiltonian, by substituting the optimal control u*(t)

W) = —R- ()BT (1 2= I(t)
We get,
0% (a(t))

(), 1), 50 = 2 ()Q(a(0)

1|aJ* (z(t))
oz (t)

2
{ z(t) } He(t)

B(H)RT'(WRE)R™ ()BT (¢)

oz (t)

a:(t) 0J* (z(t))

B(t)R BT (t) 5200)

9J* ((t))
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87 (2(1) _

R(u(t) + BT () =5 o

The gradient of the Hamiltonian witch respect to u(-) must vanish along the trajectory
From the first-order optimality conditions, we solve for the optimal control and get

aJ" (x(t))

w0 = R BTG 5

® We used the assumption that R(t) is invertible
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After grouping terms and rearranging, we get the optimal value of the Hamiltonian

0" (z(1)\ 1
TU)) = *IT(t)Q(t)x(t)

1[8J* (z(t))
75[817“)} B(t)R™ IBT(t)

H <z(t),u(t),

z(t) (1)

a7 (@(t)] "
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J" (z*(1))

ot

+H <z*(t), u* (4), %) =0

Optimal value of the Hamiltonian

Given the optimal value of the Hamiltonian, we can re-write the HJB equation

01 (= (1) _ 1 o1 @] " p gt ey 20 @)

T——ng(t)Q(t)w(t)+§|:T(t):| B(t)R IBT(t)T(t)
a7* (@(t)]”

_ T(t)} A(t)z(t)

The boundary condition is given by the terminal stage-cost,

T (@ ) ty) = 7 () Qg o)
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After substituting the partial derivatives in the Hamilton-Jacobi-Bellman equation,

1 . 1
S 2l (O)Pa(t) +5a”(H)Q(D)x(t)
2 —— 2

quadratic in z(t) quadratic in z(t)

- %xT(t)P(t)B(t)R_l(t)BT(t)P(t)z(t)

quadratic in z(t)

+zT()P(#)A(t)z(t) =0

quadratic in z(t)

e P(t) is symmetric
® Q(t) is symmetric
P(t)B(t)R~(t)BT (t)P(t) is symmetric

® Matrix P(t)A(t) is not necessarily symmetric
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The LQR from the HJB (cont.)
Assume that the Hamilton-Jacobi-Bellman has a quadratic solution in the state,
* 1 T
T (@(t), 1) = Sz () P(t)z(t)
The candidate solution mimics the quadratic form of the boundary condition,

I (2" (), tr) = %zT(tf)sz*(tf)

e P(t) = PT(t) = 0, as the cost must be non-negative

By taking the partial derivative of the candidate solution with respect to time, we get

9J* (2(t))

1 .
o = iw(t)Pz(t)

Similarly, by taking the partial derivative with respect to the state we get

J* (z(t))

o = P(t)a(t)

The LQR from the HJB (cont.)

For any (not necessarily symmetric) state matrix A, we have

A= Aq + Ag

symmetric  skew-symmetric

Then, we can write

A+ AT

a4, = A4
2
AT
2Ty

We re-write P(t)A(t) in 2T (t) P(t) A(t)z(t)

P(A®) = 5 (POAD + (POAW)T) +5 (POAD) — (PL)AW)T)

symmetric skew-symmetric

In the quadratic form, the skew-symmetric part will vanish
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The LQR from the HJB (cont.)
After substituting P(t)A(t) with %(P(t)A(t) + (P(t)A(t))T> in the HJB, we get
ST OPWO(D) + 2T (0QWa(t) ~ " (PWBOR ()BT (1) P(1)a(1)
+ %xT(t)P(t)A(t)z(t) + %xT(t)AT(t)P(t)x(t) =0
That is, we have

%xT(t) (P(t) +Q(t) — P()B(t)R™ (1) BT (t) P(t) + P(t)A(t) + AT(t)P(t)> z(t)
=0

As a result, for any z(t) we get the matrix ordinary differential equation for P(t)

P(t)+ Q(t) = P()B()R™ (1) BT () P()A(t) + P(t)A(t) + AT (1) P(t)
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The LQR from the HJB (cont.)

The matrix differential equation is the matrix differential Riccati equation
P(t) = —P()A(t) = AT () P(t) + P(t) B(t) R~ () BT () P(t) — Q(t)

The boundary condition P(t;) is the terminal state weight-matrix Qy

Once matrix P(t) is determined along the trajectory, we get the optimal control

u(t) = —R™Y()BT(t)J* (z(t),t)
= —R7Yt)BT(t)P(t)z(t)
= —K(t)z(t)

The optimal control is given in linear state feedback form
® The time-varying feedback gain,
K(t) =R~ ()BT () P(t)
® (Also for LTI systems)

A remarkable conclusion, though we did not prove the global optimality of the control



