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An optimisation problem consist of the following three components
® An objective function f(z)
® The decision variables z
® Constraints h(z) and g(z)
Consider the optimisation (minimisation) problem in standard form,
min  f () (Objective function)
zeRN
subject to g (z) =0 (Equality constraints)
h(z) >0 (Inequality constraints)
P— Overview (cont.)
2023
min  f (z)
zeRN

subject to g (z) =0
h(z)>0

All functions are (twice) continuously differentiable functions of a decision variable z

f(l'):f($1,$2,---7xN)

J

FRN SR
g1 (xl,xg,...,a:N)
g2 (1, 22,...,2N)
g(z) =
Lgn, (1, 22,...,2N)
gRMLRNg
-hl(:Elaan'-'axN)
ha (z1,22,...,2N)
h(z) =
Lhn, (21, 22,...,2N)

—~
hRN 5 RNE
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min  f(z)

zeRN
subject to g (z) =0
h(z)>0

We define the feasible set 2 to be the set of points z that satisfy all the constraints

Q:={zecR":g9(z)=0,h(z) >0}

The feasible set defines the space in which we can search for a solution to the problem
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Consider the minimisation of some function f (z) under some equality constraint g (z)
Let f: R? - R
3 1
f(z) = 5%2 +omm — 22+ 30

Let g: R? - R
g(z)=af + 23 -1

3
min  f ()
zER?2
x* subject to g(z) =0
2 ' g

Determine minimiser z* constrained to set € R?
+ ® In grey, contour lines of the objective f(z)
® In cyan, the feasible set 2 € R?
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Minimise function f (z) = 100(z2 — z2)? + (1 — z1)2, under inequality constraints h (z)

h1 (:I?) —34x1 — 3022 + 19

ho (:C) = [+10x; — 0529 + 11

h3 (m) +03z1 + 2222 + 08

ll:’Rgr—)’R3
3
min  f ()
TER2
subject to  h(z) >0
0 x*

Determine minimiser z* constrained to set Q € R2
® In grey, contour lines of the objective f(z)

® In cyan, the feasible set 2 € R?
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min  z? + 23 (Objective function)
zE€R?
subject to z1 —1=0 (Equality constraints)

23 —1—22 >0 (Inequality constraints) .

1221%+1

~ fiR? =R, WitthCQ(RQ)

~r g R2 = R) with g€ C2 (R2) . 1
Wh:RQ—)R,vvi‘chhe(',‘2(7€2) ff\
The feasible set, the set of feasible decisions & 1 ;

Q= {z € R?|h(z) > 0,9 (z) = 0}

The minimiser z*, at point e
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e S

subject to g (w) =0
h(w) <0

We define the level set L to be the set of points w such that f(w) = ¢, in which ¢ € R
{weRN: f(w)=c}
We define the sublevel set L to be the set of points w such that f(w) < ¢, with ¢ € R

{weRY:f(w) <c}

CHEM-E7225 Overview (cont.)
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T T T T T ]
10 o
T T T T T\ T T =T Consider the optimisation problem
2 0F - min  sin (w)
= wWER
subject to w >0
=1 | | T —w >0
N N S N N

—m 0 T 27w 3w 41w 57w

w
Level set for ¢ = 0.5
{weR:f(w)=0.5}

Sublevel set for ¢ = 0.5
{weR: f(w) <05}
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min  f (w)
weRN

subject to g (w) =10
h(w) > 0

A point w € RY is the global minimiser of the objective function f, given the constraint
functions g and h, if and only if
w* € Q
f(w) > f(w*), for all w € Q

® The global minimiser is the point for which the constrained objective is the smallest

® Note that the global minimiser is not necessarily unique

The global minimum is the value f (w*) of the objective at the global minimiser w*

® The global minimum is unique
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2023

min  f (w)
weRN

subject to g (w) =10
h(w) > 0

Existence of a global minimiser (Weierstrass)

Let the set Q = {w € RY |h (w) > 0, g (w) = 0} be non-empty, bounded and closed

~ As always, we assume that f : Q — R is at least C!

~~ Then, there exists at least one global minimiser

Knowing that there is a global minimiser does not suggest an algorithm to find it
® Importantly, the objective function must be defined over a compact set

® (Weierstrass does not provide guarantees for unconstrained problems)
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T T T T T 1 ] o
1 n Consider the optimisation problem
min sin (w)
—~ wER
3 = _ .
= subject to w >0
47 —w >0
-1 e e There are two global minimisers
—7 0 T 27 37w 47 57 ® One global minimum
w
O
When the global minimiser is unique, then it is called the strict global minimiser
w* €N
f(w)>f(w*), for all w € Q\{w*}
CHEM-Er225 Overview (cont.)
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subject to g (w) =10
h(w) >0

A point w € RY is the local minimiser of the objective function f, given the constraint
functions g and h, if and only if
w* €Q

and there exists an open ball V' (w*) about w* such that

f(w) > f(w*) for all w € N (w) N

® The value f (w*) is the local minimum

When the local minimiser is unique in N (w*), then it is a strict local minimiser

f(w) > f(w*), for all w € N (w) N Q\{w™}



CHEM-ET7225
2023

17\ I I I I I \7
S of. o .
(g
-1} ° ° .
—m 0 7™ 27 37 47 bw
w
I
10 [~ =
2 ol o .
= o
—10 |- ¢ N
I R R R B

—m 0 7T 27 37 47 57
w
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XTI L
7
N\

D Avav2 /4

Consider the optimisation problem
min sin (w)
wWER
subject to w >0
dTr—w >0

There are three local minimisers

® Two global minimisers

Consider the optimisation problem
min  wsin (w)
wER

subject to w >0
47 — w >0

There are three local minimisers

® One global minimiser

wrr€1i71212 g— %(511}12 —|—5w22 + 3wy we — w1 —2w2) ef<w12+w22)
wy+2>0
wy —22>0
ws +2>0
wr —22>0
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min  sin (rwiwz) + 1

wER?
w1 +3/2>0
wi —3/2 >0
ws +3/2 >0
ws —3/2 >0
O
CHEM-E7225 Overview (COﬂt.)
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min  f (w)
weRN

subject to g (w) =10
h(w) <0

From the given definitions, we understand that to be able to determine the state (global
or local) of minimiser w*, we need to describe the feasibility set in its neighbourhood

hi (w)
ha (w)
h(w) =

h, (w)

An inequality constraint h; (w) < 0 is said to be an active inequality constraint at
w* € Q if and only if h; (w) = 0, otherwise it is an inactive inequality constraint

® The index set of active inequality constraints is A (w*) C {1,2,..., N}
® The index set A (w*) is denoted as the active set

® The cardinality of the active set, Ng = | A (w*) |
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Classification

Nonlinear optimisation

Classification

Nonlinear programs (NLPs, smooth functions)

min f(w)
weR

subject to g (w) =10
h(w)>0

Functions f, g, and g are continuously differentiable at least once, often twice or more

The problem data
~ f:RN 5 R, with f € C! (RN) or more
g : RN = RNo, with g € C! (RN) or more
~ h: RN — RN with h € C! (’RN) or more
Differentiability of all problem functions allow to use algorithms based on derivatives

® We consider the nonlinear program as the more general formulation

® No explicit structure to exploit in the general formulation
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Linear programs (LPs, affine functions)

minN cTw

R g

CERT fw) T (en)

subject to Aw —b=0
——

g(w)
Cw—d>0
~——
h(w)

Functions f, g, and g are affine, there are efficient solutions (active set/interior point)
The problem data

* ce RN (cp € RY)

* AeRNoXN and b e RNs

°* C e RM*N and d € RNV

Commonly used software packages for LPs: CPLEX, SOPLEX, lp_solve, lingo, linprog

P Classification | Linear programs (cont.)
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A linear program

min  [1 2] [“’1]
w€R2 wo

subject to — 10 < w; <10

—10< wy <10
10 |
& 0
6
“—
__jl() |
| | |

—10 0 10
z1
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min [1 2] [“’1]

wER?2 w2

subject to —10< w; <10
—10 < wy < 10

Equivalently, we have
min w1 + 2ws
weER?
f(w)
subject to w; +10>0
——
hy (w)
—w; +10>0
N——
ha (w)
we + 10> 0
——
hg (w)
—w2 + 10> 0
N——

°*fiRZSR ha(w)
° h:R? R

P — Classification | Quadratic programs
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Quadratic programs (QPs, linear-quadratic objective + affine constraints)
T 1

min ctw+ ~wT Bw
weRN 2

f(w)
subject to Aw —b=0
——
g(w)
Cw—d>0
——
h(w)

Function f is linear-quadratic and functions g and h are affine

The problem data
* ccRYN
~ B € RVN*XN  symmetric
e AcRNe*N and b e RNs
° CeRNXN and d € RN

Commonly used packages for QPs: CPLEX, MOSEK, qpOASES, OOQP, quadprog
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1 Tloyr b
min [ ca wi| 2w 11 biz| w1
wER2 ) 2 |we bo1  boa| |w2

/

-

01w1+02w2+5(511w12+(b12+b21)w1w2+b22w22)

C11 C12 w 1
subject to c21 €29 [ 1} — b2 =0
w2
|31 c32 b3
q(\;)
[d11 di2 di
d21  do2| |w1 do
= >0
dz1  d32 [U/Q] ds| —
| da1 dgo d4
h(w)
* fRZR
® g: R2 — R3
®* h:R2 R
]
P— Classification | Quadratic programs (cont.)
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T 1 T
cw+ —w' Bw
Ny 2 J/
f(w)

If matrix B is positive semi-definite (27 Bz > 0, for all z € R"), then the QP is convex
® If B is positive definite (27 Bz > 0, for all z € R"), the QP is strictly convex

The positive- and semi-positive definiteness of matrix B is checked from its eigenvalues
Generalised inequality for symmetric matrices
Positive semi-definite matrix, B = 0

min Apin(B) >0

Positive definite matrix, B > 0
min Apin (B) > 0
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A convex quadratic program

. [1 2] w1+1w1T5 2] [un
wnel%lz w2 2 | wa 2 10| (w2
subject to — 10 < w; <10
—10< we <10
10 [ =
8 of |
—10 |- |
| | |

—10 0 10

Convex quadratic problems are easy to solve (the local minimum is a global minimum)
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w1
w2

—10 0 10
w1
I
7y
VAT
R
AT 1T .
L1,
LI A1)
| |
—10 0 10

w1
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A strictly-convex quadratic program

min [0 2] [Zﬂ%mr{g i [

subject to —10 < w; <10

—10 < wy < 10
10| |
500 s of =
&
s
0 —10| |
| | |

—10 0 10

Strictly-convex quadratic programs are the easiest to solve (a unique global minimiser)
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o w1 1wy T 5 0] |ug
AR O R A R i
1 ] 1 ]
§ 051 - § 051 =
07\ | ] 07\ | L]
0 0.5 1 0 0.5 1
w1 w1
1 T N n T ]
§ 051 - § 051 =
07\ | ] 07\ | L]
0 0.5 1 0 0.5 1
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A non-convex quadratic program

w22+ 32 [2)

subject to —10 < w; <10
—10< we <10

10

T2
o
T
|

—10

—10 0 10

Non-convex quadratic programs can be difficult to solve (for a global minimiser)
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o w1 1 w1T 5 0 w1
AR O R R R 1
1 ] 1 ]
§ 051 - § 051 =
07\ | ] 07\ | L]
0 0.5 1 0 0.5 1
w1 w1
1 T N n T ]
§ 051 - § 051 =
07\ | ] 07\ | L]
0 0.5 1 0 0.5 1
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Linear and convex quadratic programs are part of an important class of problems

Convex programs

min  f (z)

z€RN
subject to g (z) =0
h(z) <0

The feasible set Q = {z € RN : h(z) > 0, g (z) = 0} and function f is also convex

There exists a wide availability of packages that can be used for convex problems
® YAMILP (based on SDP3 and SeDuMi) and CVX (Matlab-based)

P— Classification | Mixed-integer programs

2023

Mixed-integer nonlinear programs (MINLPs, real and integer decision vars)

min  f(w,v)
weRN
vezM
subject to g(w,v) =0

h(w,v) >0

Mixed-integer nonlinear programs, smooth functions with full or partial relaxations
® Relaxation, by letting variables z to be real vectors
min  f(w, )
weRN
veRM
subject to g(w,v) =0
h(w,v) >0

® (Convexification, with branch-and-bound techniques
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Convex optimisation

Nonlinear optimisation

CHEM.E7225 Convex optimisation
2023

Linear programs and convex quadratic programs are convex optimisation problems
® An important subclass of continuous optimisation problems
~~ Objective function must be a convex function

~~ The feasible set must be a convex set

For this class of problems, any local minimiser is a global minimiser (given w/o proof)
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Convex sets

Consider set Q ¢ RY

Set Q is convex if and only if, for all pairs (w, w’) € Q and scalars A € [0, 1], we have

w4+ AMw' —w) €N

® w4+ Aw’ — w) are points on the line segment bounded by w and w’

® When )\ = 0 we obtain point w, when A = 1 we obtain w’

Equivalently, we say that ‘all connecting segments lie in the set’

P — Convex optimisation | Convex functions

2023
Convex functions

Consider some function f : 2 - R

Function f is convex if and only if, set €2 is convex set and for all the pairs (w, w’) € Q
and scalars A € [0, 1], we have

fw+XMw—w)) < f(w) +A(f (w') = f(w))

® f(w)+ Af (w") — f (w)) are points on the segment bounded by f (w) and f (w’)
® f(w+ AMw — w’)) are function values at points in the segment w + A(w — w’)

41 A 1 ’
—~ —_ 07 —
220 12
= =

1k N

0 \ L | |

—2 0 2 -2 0 2
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Equivalently, we say that ‘all secants are above the graph of f’

ne R 1
— 0
220 12
= =
__.1 |
0 \ L |
—2 0 2 -2 0
w w

Similarly, we can say that ‘the epigraph of f is a convex set’
epi(f) = {(w,s) e RV x R:z € Qs > f (w)}

This theorem combines convexity of sets and functions

P— Convex optimisation | Convex functions (cont.)
2023

Concave functions

A function f : Q — R is a concave function if function —f is convex

of R al
= B
\E?/ __.2 - 1 ~— 12 |
= T
_47\ \ L 0 \
-2 0 2 -2 0
w w

The domain of definition © of the function (—f) must be a convex set

The Hessian matrix of a concave function is negative semi-definite

V3 (w) 20
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Convex programs
min  f (z)
zeRN
subject to g (z) =0
h(z) <0
The feasible set Q = {z € R : h(z) > 0, g (z) = 0} and function f is also convex
For convex programs local optimality implies global optimality
® That is, every local minimiser is also a global minimiser
® Global optimality is retrieved from local information
Consider a local minimiser w*, we have
f(w') > f(w*), forall w e
P— Convex optimisation | Properties (cont.)

2023

f(w') > f(w*), foral w e
If w* is a local minimiser, then for all w € N (w*) N Q we have that f (@) > f (w*)

® By convexity of €2, the segment
w* + Mw' —w*) € Q

® Point w is in the segment, thus

f(w®) < f(w)

<f (w* + AMw' — w*))

® By convexity of f, we have
fw*) < f(w)
< f(w* 4+ AMw' —w*))
< F ) + A (w) = f (w) .

Subtract f (w*) from both sides, divide by A # 0 (w is not w*), and then rearrange
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Convexity-preserving operations for sets

® Intersections

The intersection of (finitely or infinitely many) convex sets is also a convex set

ISR LR ® Affine images
2023
Affine transformations ' = AQ + b of a convex set 2 are also convex sets
O ={w ecRM:3weQ:w =Aw+b,Ac RM*N p c RM}
S)l
Aw +b

® Affine pre-images
If set Q is convex, then there exists a convex set €)' such that Q = AQ’' + b

O ={w eRM :w=Aw' +b,Aec RV*M p c RN}




P Convex optimisation | Convex sets and functions (cont.)
2023

Convexity-preserving operations for functions
® The (point-wise) sum of two (or more) convex functions is also a convex function
® Positively weighted sums of two (or more) convex functions is a convex function

¢ Affine transformations Aw + b of the independent variable w € €2 of a convex
function f : Q@ — R lead to convex functions f : Q' — R from the set Q' = {w’ €

RM|w' = Aw + b,w € Q, A € RM*N p ¢ RMY} such that f (w) = f (Aw + b)

Aw+b

P — Convex optimisation | Convex sets and functions (cont.)
2023

® The supremum f(w) = supy _ y, fn, (w) over a set of convex functions {fy, }2[::1

is a convex function, because its epigraph is the intersection of convex epigraphs
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Convexity of C! functions
Let Q € RY be a convex set and let f : © — R be a continuously differentiable function

Function f € C! (RN) is convex if and only if for all pairs of points (w,w’) € €,

fw) + V) (0 —w)

f(w') > f(w) +Vf(w)" (v —w)

Taylor’s expansion at w

® Equivalently, was can say that ‘all tangent lines lies below the graph of f’

® (Remember that by convexity ‘all secant lines lies above the graph’)

This theorem provides a possibility to check for convexity, by testing all pairs (w, w’)

P— Convex optimisation | Convex sets and functions (cont.)
2023

f (') 2 f () + Vf ()7 (' —w)

TV
Taylor’s expansion at w

Suppose that f is a convex function over the convex set €2

Because of the convexity of function f, we can write

fw+XMw —w)) < f(w) +A(f (w') = f(w))

Rearranging, we get,

fw+Aw —w)) = f(w) <Af (w') = f(w))

Using the definition of (directional) derivative, we have

N o (@ Aw —w')) - f (w)
Vf(W)T(w—UJ)—Ahglo X

< f(w') = f(w)
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Convex optimisation | Convex sets and functions (cont.)

Convexity of C? functions
Let Q € RY be a convex set and let f : Q2 — R be twice continuously differentiable

Function f € C? (RN) is convex if, for any point w € 2, we have
V2f (w) = 0

® The Hessian matrix must positive semi-definite

min )\min(v2f (w)) >0

This theorem provides a possibility to check for convexity, by testing single pairs w

Convex optimisation | Convex sets and functions (cont.)
VZf (w) =0
We consider the second-order Taylor’s expansion of function f along A(w — w’)
f (w + AMw' — w)) =

() X9 () (' = w) + N2~ 0) TV () — w)
+ O (w' — w)?)

Because of the convexity of function f, we have f (w’) > f (w) + Vf (w) T (w’ — w)
f(w') = f(w) = Vf ()" (0 —w) 20
Thus,
f(w+AMw —w")) = f (w) = AVf ()" (w —w') =

%Az(w —wTV2f (w)(w — w') + ON(w — w)?)
——
=0
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117
ILH11) 1 r
'q#z?' _ = w1 5 0 w1
/7 f(w)—z{w] [0 3| [we
s V2f (w) >0
e BT Convex optimisation | Convex sets and functions (cont.)
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Convexity of level-sets

Consider the level set {w € Q: f (w) < ¢, c € R} of any convex function f : Q@ - R

® The level-set is a convex set, for any constant ¢

I I 1 ]
2 |
~~ ~~ 07 N
2 3
~ 0 | o=
1 n
! ! ! ! !
-2 0 2 -2 0 2

The theorem suggests that convex sets can be created from functions with inequalities
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. . . N
Consider a collection of convex functions {f, : RY — R}, ::1

Consider the intersection of their sub-level sets

Q={we R : {fu, (w) <0} _}

np=1

Set ) is a convex set

Level sets €2, of convex functions are convex sets

~» Their intersection is also a convex set

Np,
Q= ) Qn,
np=1

P— Convex optimisation | Formulation

2023
Consider the general form of a nonlinear optimisation problem

min f(w)
R

we
subject to g (w) =10
h(w)>0

We defined the feasible set {2 to be the set of points w that satisfy all the constraints
Q={weRN|g(w)=0,h(w)>0}

In order to have a feasible set €2 that is convex, the equality constraints must be affine
functions and the (positive defined) inequality constraints must be concave functions

If f is convex and the above holds, then the problem is convex (a sufficient condition)

min  f (w) (Objective function, convex)
weRN
subject to Aw —b=0 (Equality constraints, affine)
(w)
glw

h(w) <0 (Inequality constraints, convex)
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Convex optimisation | Formulation (cont.)

min  f (w) (Objective function, convex)
weRN
subject to Aw —b =0 (Equality constraints, affine)
N——
g(w)
h(w) <0 (Inequality constraints, convex)
The inequality constraint functions El, Ez, . ,ENh must be convex functions

® We know that their intersection is a convex set

The equality constraint function g1, g2, ..., gn, must be affine functions

® They are affine pre-images to a convex set, point 0

The intersection of a convex set with a convex set is a convex set

~~ The feasible set (2 is convex

Convex optimisation | Optimality

First-order optimality conditions for convex problems (constrained)

Consider the convex problem with set @ = {w € RY : g (w) = 0, h (w) < 0}

minN f(w) (Objective function, convex and differentiable)

weER

subject to Aw+b=0 (Equality constraints, affine)
h(w) <0 (Inequality constraints, convex)

For convex optimisation problems, a local minimiser is also a global minimiser
Points w* € € is a global minimiser if and only if, for all w € Q

Vi (w*)(w—w*) >0
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Convex optimisation | Optimality (cont.)

Vi (w) " (w—w*) >0

If the condition holds, by the convexity characterisation of C! functions we have

f(w) > f(w)+Vf(w)T (w —w*) (for all w’ € Q)
> f(w")

We can also assume the existence of w’ € Q such that Vf (w*)(w’ — w*) <0

Then, by a first-order Taylor’s expansion

f (w* + A(w' — w*)) ~f(w*)+ AYf (w*)T(w’ - w*)J
<0

For some small A, this yields

f(w™ + M —w™)) < f (")

Convex optimisation | Optimality (cont.)

First-order optimality conditions for convex problems (unconstrained)
Consider the convex optimisation problem with feasibility set Q = RN

min  f(w) (Convex and differentiable)
weRN

A point wx € 2 is a global minimiser if and only if the following holds

Vi(w)T =0
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Convex optimisation | Optimality (cont.)

Consider the strictly convex quadratic problem

1
min cTw+ ~w? Buw
weRN 2H>f0—’

For the gradient vector evaluated at the minimiser, we have

Vf(w*)=c+ Bw=0

By solving the system of linear equations, we get

w*=—B l¢
By substitution, we get the optimal function value

1
f(w*) = —§CTB_1C



