
ELEC-C8201 Control and Automation 
2. Exercise Answers 
 

1. It must be demonstrated that the differential equation below and the state 

presentation are identical. 
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Using matrix multiplication rules, the equation group reduces to the following matrix 

form: 
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From these equations, we find the IO (input-output) u(t) and y(t) interdependence. Now 

we need to eliminate the state variables x1(t), and x2(t) from the final equation. Initially, 

using the last equation 1( ) ( )y t x t  relation into the previous two: 
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Now place it in the first equation 
2( ) ( )y t x t  : 
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This shows that the differential equation and the state-space equation describe the 

same system. 

 
 



2.  First write the same equation a little differently by using an entry for the derivative 

given by: 
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Transfer all the terms containing the p, or the derivative, to the left and all the others to 

the right 
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Takes p as the common factor. (Note: keep taking p as a common factor till no higher 

order of p remains in the equation.) 
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Now select the state variables as the bracketed values which are multipled by each p. 

 

1

2

( ) 3 ( ) 2 ( ) 2 ( )

x

x

p p y t y t u t y t
 
    
 
 

                                                                 (1) 

 

Or: 
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The second equation is placed first and can be solved 
1( )x t  (below). Expressions  

2( )x t  

is obtained from the equation (1). 
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The output y is described as: 

 

1( ) ( )y t x t  

 

 

Based on the last three equations, the following state-space representation can be 

written 
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The state space variables can be selected in multiple ways, as long as the result is in an 

acceptable form.  In fact, state variables can be selected in infinite many ways.  All of 

them lead to the same input-output behavior.  (Of course, the system will not be changed 

based on the state variable selection.)  In this task, the selection of state variables, unlike 

the first problem, can be challenging, as the derivative on the right side of the 

differential equation is problematic.  There must be no derivative terms on the right side 

of equations.  
 

 

 

 

 

3. RLC Circuits - The modelling of circuits is done through the basic formulae of 

electrical engineering (Kirchhoff I & II...). The equations describing the 

components needed for this task are: 
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The purpose is to form the differential equation, which shows the interdependence 

between control input and output. In the given task, the response should be of the form: 
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Forming the required loops and voltage balance based on the Kirchhoff law: 

 

 

 



 
For ease of writing and reading, we omit tagging time dependency. Voltage balance 

across resistors: 

 

 111 iRU   and 222 iRU   

 

Current flow through capacitors: 
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Kirchoff’s first law: 
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Substituting for current values: 
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We make the final differential equation by eliminating V1  from the above equation as 

follows: 
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Substituting for V1 in the above equations: 
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Arrange the equation in the right order, transfer the co-efficient of highest derivative of 

V2 onto other terms and add the earlier omitted time dependency entry for the time-

dependent: 
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For the state space representation, you will notice that there are two energy-storage 

elements (capacitors) in the circuit.  So we are looking for two state variables.  This 

could also be seen from the fact that the above-derived differential equation (input-

output) is of second degree. 

 

Select the voltages over the capacitors to be state variables.  The following equations 

can be used to derive the state relations: 
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State equations are: 
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The matrix format yields a state space representation: 
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It is seen that it was much easier to build a state space representation than a differential 

equation that describes the input-output behavior.  In later teaching methods, the 



transfer function (on the Laplace plane) could be calculated directly from the state 

space, from which the formation of the input-output differential equation would be quite 

straightforward.  

 

 


