ELEC-C8201 Control and Automation

Exercise 4

1. Specify the total transfer function for the system given below. (The numerator and denominator of the transfer function are polynomials in s)

2. For the system model given below, calculate output $y(t)$, when the reference is $r(t)=5.0 u_{s}(t)$ and the disturbance is $d(t)=5.0(\cos (t)) u_{s}(t)$. Note: $u_{s}\left(t-t_{0}\right)$ means a step function entering at time t_{0}.

3. Calculate the transfer function corresponding to the following state space model:

$$
\left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=\left[\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 0 \\
0 & 2 & 1
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] u(t) \\
y(t)=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \mathbf{x}(t)
\end{array}\right.
$$

4. Examine how many roots do the following polynomials have on the right half plane:
a. $s^{4}+6 s^{3}+13 s^{2}+12 s+4$
b. $2 s^{5}+s^{4}+3 s^{2}+s+2$
c. $s^{4}+2 s^{3}+4 s^{2}+8 s+10$
5. The process of the system below is unstable. Does this mean that the closed loop system is unstable?

Tips:

Matrix A inverse:
First we obtain the components of the adjoint matrix (adjA) from the following expression:

$$
a_{i j}=(-1)^{i+j} \operatorname{det} A_{i j},
$$

where $\boldsymbol{A}_{i j}$ is the submatrix of A obtained by removing line i and column j (Note in particular, the order of indexes).

Inverse of a matrix is obtained from its adjoint matrix by the following relation:

$$
A^{-1}=\frac{\operatorname{adj} A}{\operatorname{det} A} .
$$

Laplace transform expressions:

Laplace transformations and Time domain responses

Laplace transformation	Time domain function
1	$\delta(t)$
$1 / s$	1
$1 / s^{2}$	t
$1 / s^{n+1}$	$t^{n} / n!$
$\frac{1}{s+a}$	$e^{-a t}$
$\frac{1}{(s+a)^{n+1}}$	$\frac{t^{n} e^{-a t}}{n!}$
$\frac{1}{s(s+a)}$	$\frac{1}{a}\left(1-e^{-a t}\right)$
$\frac{1}{(s+a)(s+b)}$	$\frac{1}{a-b}\left(e^{-b t}-e^{-a t}\right)$
$\frac{1}{s(s+a)(s+b)}$	$\frac{1}{a b}+\frac{1}{a b(b-a)}\left(a e^{-b t}-b e^{-a t}\right)$
$\frac{a}{s^{2}+a^{2}}$	$\sin (a t)$
$\frac{s}{s^{2}+a^{2}}$	$\cos (a t)$
$\frac{a}{(s+b)^{2}+a^{2}}$	e^{s+b}
$\frac{s+b)^{2}+a^{2}}{(s+a t}(a t)$	
$\frac{s+a}{s+b}$	$\delta(t)+(a-b) e^{-b t}$

