ELEC-C8201 Control and Automation Exercise 4

1. Specify the total transfer function for the system given below. (The numerator and denominator of the transfer function are polynomials in *s*)

2. For the system model given below, calculate output y(t), when the reference is $r(t) = 5.0u_s(t)$ and the disturbance is $d(t) = 5.0(\cos(t))u_s(t)$. Note: $u_s(t-t_0)$ means a step function entering at time t_0 .

3. Calculate the transfer function corresponding to the following state space model:

 $\begin{cases} \mathbf{\dot{x}}(t) = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}(t) \end{cases}$

4. Examine how many roots do the following polynomials have on the right half plane:

a.
$$s^4 + 6s^3 + 13s^2 + 12s + 4$$
 b. $2s^5 + s^4 + 3s^2 + s + 2$
c. $s^4 + 2s^3 + 4s^2 + 8s + 10$

5. The process of the system below is unstable. Does this mean that the closed loop system is unstable?

Tips:

Matrix A inverse:

First we obtain the components of the adjoint matrix (adjA) from the following expression:

$$a_{ij} = \left(-1\right)^{i+j} \det A_{ij} ,$$

where A_{ij} is the submatrix of A obtained by removing line *i* and column *j* (Note in particular, the order of indexes).

Inverse of a matrix is obtained from its adjoint matrix by the following relation:

$$A^{-1} = \frac{adjA}{\det A} \, .$$

Laplace transform expressions	Laplace	transform	expressions:
-------------------------------	---------	-----------	--------------

	Time domain function
F(s)	f(t)
$C_1F_2(s) + C_2F_2(s)$	$C_1f_2(t) + C_2f_2(t)$
F(s+a)	$e^{-at}f(t)$
$e^{-as}F(s)$	$\begin{cases} 0, & t \le a \\ f(t-a), & t > a \end{cases}$
$\frac{1}{a}F\left(\frac{s}{a}\right)$	f(at)
$F_1(s)F_2(s)$	$\int_{0}^{t} f_{1}(\tau) f_{2}(t-\tau) d\tau$ $f'(t)$
sF(s)-f(0)	f'(t)
${}^{n}F(s) - \left[s^{n-1}f(0) + \dots + f^{(n-1)}(0)\right]$	$f^{(n)}(t)$

Laplace transformation	Time domain function
1	$\delta(t)$
1 / <i>s</i>	1
$1 / s^2$	t
$1 / s^{n+1}$	$t^n / n!$
_1	e^{-at}
$\overline{s+a}$	
1	$t^n e^{-at}$
$\overline{(s+a)^{n+1}}$	<u></u> <u>n!</u>
1	$\frac{1}{a}(1-e^{-at})$
$\overline{s(s+a)}$	$\frac{-(1-e)}{a}$
1	$\frac{1}{a-b}\left(e^{-bt}-e^{-at}\right)$
$\overline{(s+a)(s+b)}$	$\frac{1}{a-b}(e^{-e})$
1	1 1 $\begin{pmatrix} -bt & -at \end{pmatrix}$
$\overline{s(s+a)(s+b)}$	$\frac{1}{ab} + \frac{1}{ab(b-a)} \left(ae^{-bt} - be^{-at} \right)$
a	sin(at)
$\frac{a}{s^2 + a^2}$	
$\frac{s}{s^2 + a^2}$	$\cos(at)$
$\frac{a}{\left(s+b\right)^2+a^2}$	$e^{-bt}\sin(at)$
$(s+b)^2 + a^2$	
<u>s+b</u>	$e^{-bt}\cos(at)$
$\overline{(s+b)^2+a^2}$	
s + a	$\delta(t)+(a-b)e^{-bt}$
$\overline{s+b}$	

Laplace transformations and Time domain responses