
ELEC-C8201: Control Theory and Automation

Exercise 5

The problems marked with an asterisk (?) are not discussed during the exercise session. The
solutions are given in MyCourses and these problems belong to the course material.

1. A feedback control system with a proportional gain 4 and a plant with transfer function

G(s) =
s2 + 1

s(s+ a)

is shown in Figure 1.

r̄(s) ȳ(s)
4 s2+1

s(s+a)Σ
+

−

ē(s) ū(s)

Figure 1: Feedback control system.

Sketch the root locus for 0 ≤ a <∞.

Solution. We first restructure our system to be in the way we know how to handle:

1 + kpG(s) = 0⇒ 1 + 4
s2 + 1

s(s+ a)
= 0

⇒ s(s+ a) + 4(s2 + 1) = 0

⇒ as+ 5s2 + 4 = 0

⇒ 1 + a
s

5s2 + 4
= 0

Next, we find the break-in point:∑
i

1

σ − zi
=

∑
j

1

σ − pj
⇒ 1

σ
=

1

σ + jβ
+

1

σ − jβ

⇒ 1

σ
=

2σ

σ2 + 4/5

⇒ σ2 + 4/5 = 2σ2 ⇒ σ2 = 4/5⇒ σ = ±2/
√

5

Since a > 0 and by the 2nd step of the root locus procedure, the break-in happens at
σ = −2/

√
5 ≈ 0.8944.



Hence, the root locus plot is given by

Figure 2: Root locus for changing a.

MATLAB Code:

1 sys = t f ( [ 1 0 ] , [ 5 0 4 ] ) ; % Def ine s the t r a n s f e r func t i on
2 r l o c u s ( sys ) ; % Produces the root l o cu s p l o t



2. A feedback control system with a plant transfer function

G(s) =
1

s(s− 1)

is shown in Figure 3.

r̄(s) ȳ(s)
K(s) G(s)Σ

+

−

ē(s) ū(s)

Figure 3: Feedback control system.

a) When K(s) = kp, show that the system is always unstable by sketching the root locus.

b) When

K(s) =
kp(s+ 2)

s+ 20
,

sketch the root locus and determine the range of kp for which the system is stable.

Solution.

a)

1 + kpG(s) = 0⇒ 1 + kp
1

s(s− 1)
= 0

⇒ s2 − s+ kp = 0

⇒ s1,2 =
1±

√
1− 4kp

2

From the roots one can see that for kp = 0 one of the roots is at zero and as kp increases√
1− 4kp < 1 for all kp such that 1 − 4kp > 0. Once kp > 1/4, we will have to poles

whose real part is always at −1/2.

One can see this from the root locus (Figure 4) as well:

Figure 4: Root locus.



b)

1 +K(s)G(s) = 0⇒ 1 +
kp(s+ 2)

s+ 20

1

s(s− 1)
= 0

⇒ 1 + kp
(s+ 2)

s(s− 1)(s+ 20)
= 0

Then, one can find the intersection with the jω-axis and the asymptote centroid and the
asymptotes and construct the root locus plot.

The root locus plot (Figure 5) is plotted here with MATLAB:

Figure 5: Root locus.

MATLAB Code:

1 s = t f ( ' s ' )
2 sys = ( s+2)/( s *( s−1)*( s +20) ) % Def ine s the t r a n s f e r func t i on
3 r l o c u s ( sys ) ; % Produces the root l o cu s p l o t



3. A feedback control system with a proportional gain kp and a plant with transfer function

G(s) =
s+ 10

s(s+ 5)

is shown in Figure 6.

r̄(s) ȳ(s)
kp G(s)Σ

+

−

ē(s) ū(s)

Figure 6: Feedback control system.

a) Determine the break-in and break-away points of the root locus and sketch the root
locus for kp > 0.

b) Determine the gain kp when the two characteristic roots have a damping factor ζ of
1/
√

2.

c) Calculate the roots.

Solution.

a) We find the break-in and break-away points as follows:∑
i

1

σ − zi
=

∑
j

1

σ − pj
⇒ 1

σ + 10
=

1

σ
+

1

σ + 5

⇒ 1

σ + 10
=

2σ + 5

σ(σ + 5)

⇒ σ2 + 5σ = 2σ2 + 25σ + 50

⇒ (s+ 10)2 − 50 = 0⇒ s1,2 = −10±
√

50

Figure 7: Root locus.



b)

1 +K(s)G(s) = 0⇒ 1 + kp
(s+ 10)

s(s+ 5)
= 0

⇒ s2 + (5 + kp)s+ 10kp = s2 + 2ζωns+ ω2
n = 0

Therefore, {
2ζωn = 5 + kp

ω2
n = 10kp

⇒

ωn =
√

10kp

ζ =
5+kp

2
√

10kp

For ζ = 1/
√

2 =
√

2/2,

5 + kp

2
√

10kp
=

√
2

2
⇒ 20kp = (5 + kp)

2

⇒ k2p − 10kp + 52 = 0⇒ (kp − 5)2 = 0⇒ kp = 5

c) For kp = 5 we substitute to the characteristic equation and

s2 + 10s+ 50 = 0⇒ (s+ 5)2 + 52 = 0⇒ s1,2 = −5± 5j

Figure 8: Root locus.

MATLAB Code:

1 s = t f ( ' s ' )
2 sys = ( s +10) /( s *( s+5) )
3 r l o c u s ( sys )
4 s g r i d (1/ s q r t (2 ) , s q r t (50) ) % p l o t s a g r id o f damping f a c t o r ze ta and

natura l f requency wn, r e s p e c t i v e l y



4. A feedback control system with a proportional gain kp and a plant with transfer function

G(s) =
(s+ 2)2

s(s2 + 1)(s+ 8)

is shown in Figure 6.

a) First, sketch the root locus for 0 ≤ kp < ∞ to indicate the significant features of the
locus. Second, use MATLAB to plot the root locus and compare it with your sketch.

b) For what value of kp do purely imaginary roots exist?

c) Determine the range of the gain kp for which the system is stable.

d) Would the use of the dominant roots approximation for an estimate of the settling time
be justified in this case for a large magnitude of gain (kp > 50)?

Solution.

a) Root locus is given by

Figure 9: Root locus.

Remark. Note that it is difficult while sketching to predict how the poles from the
imaginary axis will move. However, if one tries to determine the jω crossings, it will
become apparent.



b) On the imaginary axis, we know that the roots satisfy

1 + kpG(jω) = 0⇒ 1 + kp
(jω + 2)2

jω((jω)2 + 1)(jω + 8)
= 0

which after algebraic manipulation and by splitting the real and imaginary parts, we get{
−ω2(1− ω2) + kp(4− ω2) = 0

8ω(1− ω2) + 4kpω = 0

Solving for kp, we get kp = 14

c) From b) and the root locus diagram, it is obvious that for kp > 14 the system will be stable.

d) When K > 50, the real part of the complex roots is approximately equal to the real part
of the two real roots and therefore the complex roots are not dominant roots.



?5. A magnetically levitated (MAGLEV) high-speed train “flies” on an air gap above its rail
system (with up to 310mph!), as shown in Figure 10.

Figure 10: A MAGLEV train in China (Photo: Ren Long/China Features Photos).

The feedback control system is illustrated in Figure 11.

r̄(s) ȳ(s)
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+
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Figure 11: Feedback control system.

a) Sketch the root locus plot.

b) Select kp so that all of the complex roots have a damping factor ζ greater than 0.6. Plot
(in MATLAB) the actual response for the selected kp.

c) Select kp so that the response for a unit step input is reasonably damped and the settling
time is less than 5 seconds. Plot (in MATLAB) the actual response for the selected kp.

Solution.

a) First, we should notice that we can write it in the following form

1 +K(s)G(s) = 0⇒ 1 + kp
(s+ 1)(s+ 4)

s(s− 1)(s+ 5)(s+ 10)
= 0

Then, we can sketch the root locus, or, plot it in MATLAB

1 s = t f ( ' s ' )
2 sys = ( s+1)*( s+4)/( s *( s−1)*( s+5)*( s +10) )
3 r l o c u s ( sys )



Figure 12: Root locus.

b) To have a damping factor ζ greater than 0.6, then we mast have a gain that is greater
that ∼ 44 and smaller than ∼ 75; see the root locus in below

Figure 13: Root locus and step response (kp = 44).

1 s = t f ( ' s ' )
2 sys = 44*( s+1)*( s+4)/( s *( s−1)*( s+5)*( s +10) )
3 T = feedback ( s s ( sys ) ,1 ) ;
4 s tep (T)



c) To get the minimum settling time we have to be as far from the imaginary axis as
possible. Hence, based on the root locus diagram we can choose kp ≈ 71 and obtain a
better performance:

Figure 14: Root locus and step response (kp = 44).

1 s = t f ( ' s ' )
2 sys = 71*( s+1)*( s+4)/( s *( s−1)*( s+5)*( s +10) )
3 T = feedback ( s s ( sys ) ,1 ) ;
4 s tep (T)


