ELEC-C8201: Control Theory and Automation Exercise 5

The problems marked with an asterisk (\star) are not discussed during the exercise session. The solutions are given in MyCourses and these problems belong to the course material.

1. A feedback control system with a proportional gain 4 and a plant with transfer function

$$G(s) = \frac{s^2 + 1}{s(s+a)}$$

is shown in Figure 1.

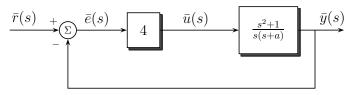


Figure 1: Feedback control system.

Sketch the root locus for $0 \le a < \infty$.

Solution. We first restructure our system to be in the way we know how to handle:

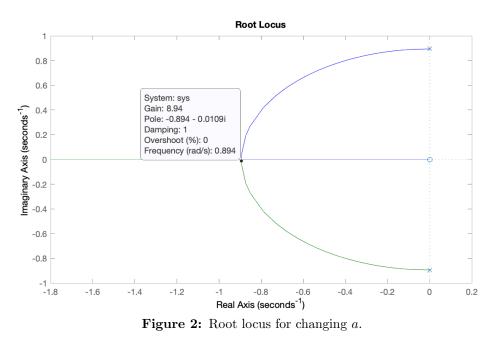
$$1 + k_p G(s) = 0 \Rightarrow 1 + 4 \frac{s^2 + 1}{s(s+a)} = 0$$
$$\Rightarrow s(s+a) + 4(s^2 + 1) = 0$$
$$\Rightarrow as + 5s^2 + 4 = 0$$
$$\Rightarrow 1 + a \frac{s}{5s^2 + 4} = 0$$

Next, we find the break-in point:

$$\sum_{i} \frac{1}{\sigma - z_{i}} = \sum_{j} \frac{1}{\sigma - p_{j}} \Rightarrow \frac{1}{\sigma} = \frac{1}{\sigma + j\beta} + \frac{1}{\sigma - j\beta}$$
$$\Rightarrow \frac{1}{\sigma} = \frac{2\sigma}{\sigma^{2} + 4/5}$$
$$\Rightarrow \sigma^{2} + 4/5 = 2\sigma^{2} \Rightarrow \sigma^{2} = 4/5 \Rightarrow \sigma = \pm 2/\sqrt{5}$$

Since a > 0 and by the 2nd step of the root locus procedure, the break-in happens at $\sigma = -2/\sqrt{5} \approx 0.8944$.

Hence, the root locus plot is given by



MATLAB Code:

1	$sys = tf([1 \ 0], [5 \ 0 \ 4]); \%$ Defines the transfer func	tion
2	rlocus(sys); % Produces the root locus plot	

2. A feedback control system with a plant transfer function

$$G(s) = \frac{1}{s(s-1)}$$

is shown in Figure 3.

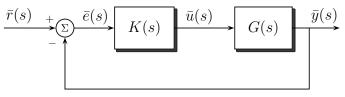


Figure 3: Feedback control system.

- a) When $K(s) = k_p$, show that the system is always unstable by sketching the root locus.
- b) When

$$K(s) = \frac{k_p(s+2)}{s+20}$$

sketch the root locus and determine the range of k_p for which the system is stable.

Solution.

a)

$$1 + k_p G(s) = 0 \Rightarrow 1 + k_p \frac{1}{s(s-1)} = 0$$
$$\Rightarrow s^2 - s + k_p = 0$$
$$\Rightarrow s_{1,2} = \frac{1 \pm \sqrt{1 - 4k_p}}{2}$$

From the roots one can see that for $k_p = 0$ one of the roots is at zero and as k_p increases $\sqrt{1-4k_p} < 1$ for all k_p such that $1-4k_p > 0$. Once $k_p > 1/4$, we will have to poles whose real part is always at -1/2.

One can see this from the root locus (Figure 4) as well:

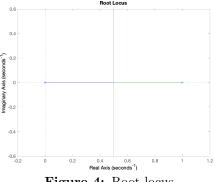
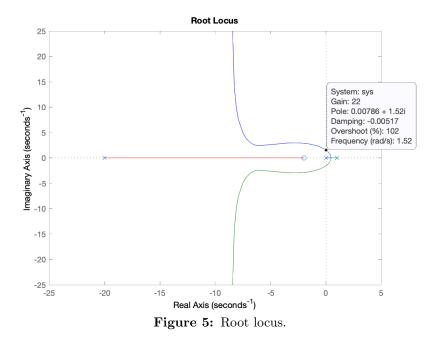


Figure 4: Root locus.

$$1 + K(s)G(s) = 0 \Rightarrow 1 + \frac{k_p(s+2)}{s+20} \frac{1}{s(s-1)} = 0$$
$$\Rightarrow 1 + k_p \frac{(s+2)}{s(s-1)(s+20)} = 0$$

Then, one can find the intersection with the $j\omega$ -axis and the asymptote centroid and the asymptotes and construct the root locus plot.

The root locus plot (Figure 5) is plotted here with MATLAB:



MATLAB Code:

```
1 \mid \mathbf{s} = \mathrm{tf}(\mathbf{s}')
```

- 2 | sys = (s+2)/(s*(s-1)*(s+20)) % Defines the transfer function
- 3 rlocus(sys); % Produces the root locus plot

3. A feedback control system with a proportional gain k_p and a plant with transfer function

$$G(s) = \frac{s+10}{s(s+5)}$$

is shown in Figure 6.

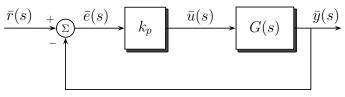


Figure 6: Feedback control system.

- a) Determine the break-in and break-away points of the root locus and sketch the root locus for $k_p > 0$.
- b) Determine the gain k_p when the two characteristic roots have a damping factor ζ of $1/\sqrt{2}$.
- c) Calculate the roots.

Solution.

a) We find the break-in and break-away points as follows:

$$\sum_{i} \frac{1}{\sigma - z_{i}} = \sum_{j} \frac{1}{\sigma - p_{j}} \Rightarrow \frac{1}{\sigma + 10} = \frac{1}{\sigma} + \frac{1}{\sigma + 5}$$
$$\Rightarrow \frac{1}{\sigma + 10} = \frac{2\sigma + 5}{\sigma(\sigma + 5)}$$
$$\Rightarrow \sigma^{2} + 5\sigma = 2\sigma^{2} + 25\sigma + 50$$
$$\Rightarrow (s + 10)^{2} - 50 = 0 \Rightarrow s_{1,2} = -10 \pm \sqrt{50}$$

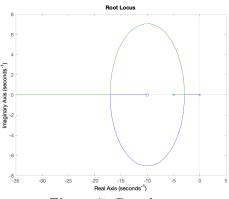


Figure 7: Root locus.

$$1 + K(s)G(s) = 0 \Rightarrow 1 + k_p \frac{(s+10)}{s(s+5)} = 0$$
$$\Rightarrow s^2 + (5+k_p)s + 10k_p = s^2 + 2\zeta\omega_n s + \omega_n^2 = 0$$

Therefore,

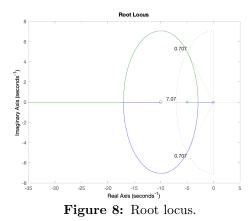
$$\begin{cases} 2\zeta\omega_n = 5 + k_p \\ \omega_n^2 = 10k_p \end{cases} \Rightarrow \begin{cases} \omega_n = \sqrt{10k_p} \\ \zeta = \frac{5+k_p}{2\sqrt{10k_p}} \end{cases}$$

For $\zeta = 1/\sqrt{2} = \sqrt{2}/2$,

$$\frac{5+k_p}{2\sqrt{10k_p}} = \frac{\sqrt{2}}{2} \Rightarrow 20k_p = (5+k_p)^2$$
$$\Rightarrow k_p^2 - 10k_p + 5^2 = 0 \Rightarrow (k_p - 5)^2 = 0 \Rightarrow k_p = 5$$

c) For $k_p = 5$ we substitute to the characteristic equation and

$$s^{2} + 10s + 50 = 0 \Rightarrow (s+5)^{2} + 5^{2} = 0 \Rightarrow s_{1,2} = -5 \pm 5j$$



4. A feedback control system with a proportional gain k_p and a plant with transfer function

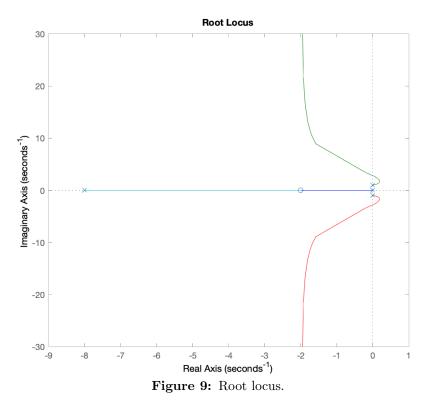
$$G(s) = \frac{(s+2)^2}{s(s^2+1)(s+8)}$$

is shown in Figure 6.

- a) First, sketch the root locus for $0 \le k_p < \infty$ to indicate the significant features of the locus. Second, use MATLAB to plot the root locus and compare it with your sketch.
- b) For what value of k_p do purely imaginary roots exist?
- c) Determine the range of the gain k_p for which the system is stable.
- d) Would the use of the dominant roots approximation for an estimate of the settling time be justified in this case for a large magnitude of gain $(k_p > 50)$?

Solution.

a) Root locus is given by



Remark. Note that it is difficult while sketching to predict how the poles from the imaginary axis will move. However, if one tries to determine the $j\omega$ crossings, it will become apparent.

b) On the imaginary axis, we know that the roots satisfy

$$1 + k_p G(j\omega) = 0 \Rightarrow 1 + k_p \frac{(j\omega + 2)^2}{j\omega((j\omega)^2 + 1)(j\omega + 8)} = 0$$

which after algebraic manipulation and by splitting the real and imaginary parts, we get

$$\begin{cases} -\omega^2 (1 - \omega^2) + k_p (4 - \omega^2) = 0\\ 8\omega (1 - \omega^2) + 4k_p \omega = 0 \end{cases}$$

Solving for k_p , we get $k_p = 14$

- c) From b) and the root locus diagram, it is obvious that for $k_p > 14$ the system will be stable.
- d) When K > 50, the real part of the complex roots is approximately equal to the real part of the two real roots and therefore the complex roots are not dominant roots.

*5. A magnetically levitated (MAGLEV) high-speed train "flies" on an air gap above its rail system (with up to 310mph!), as shown in Figure 10.

Figure 10: A MAGLEV train in China (Photo: Ren Long/China Features Photos).

The feedback control system is illustrated in Figure 11.

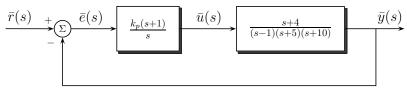


Figure 11: Feedback control system.

- a) Sketch the root locus plot.
- b) Select k_p so that all of the complex roots have a damping factor ζ greater than 0.6. Plot (in MATLAB) the actual response for the selected k_p .
- c) Select k_p so that the response for a unit step input is reasonably damped and the settling time is less than 5 seconds. Plot (in MATLAB) the actual response for the selected k_p .

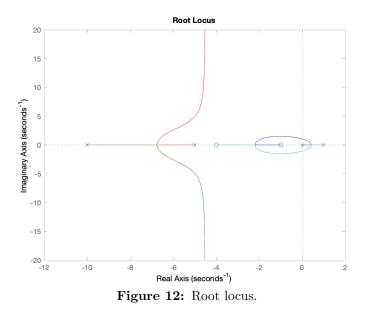
Solution.

a) First, we should notice that we can write it in the following form

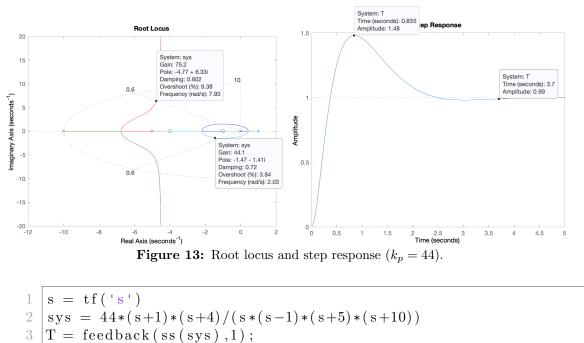
$$1 + K(s)G(s) = 0 \Rightarrow 1 + k_p \frac{(s+1)(s+4)}{s(s-1)(s+5)(s+10)} = 0$$

Then, we can sketch the root locus, or, plot it in MATLAB

```
\begin{array}{c|cccc} 1 & s &= tf('s') \\ 2 & sys &= (s+1)*(s+4)/(s*(s-1)*(s+5)*(s+10)) \\ 3 & rlocus(sys) \end{array}
```



b) To have a damping factor ζ greater than 0.6, then we mast have a gain that is greater that ~ 44 and smaller than ~ 75 ; see the root locus in below



- step(T)4

c) To get the minimum settling time we have to be as far from the imaginary axis as possible. Hence, based on the root locus diagram we can choose $k_p \approx 71$ and obtain a better performance:

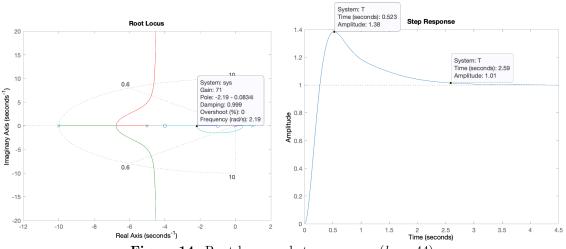


Figure 14: Root locus and step response $(k_p = 44)$.

```
1 | s = tf('s')

2 | sys = 71*(s+1)*(s+4)/(s*(s-1)*(s+5)*(s+10))

3 | T = feedback(ss(sys),1);

4 | step(T)
```