ELEC-C8201: Control Theory and Automation

Exercise 6

The problems marked with an asterisk (\star) are not discussed during the exercise session. The solutions are given in MyCourses and these problems belong to the course material.

1. Plot the frequency response of $G(j \omega)$

$$
G(s)=\frac{5000}{(s+70)(s+500)}
$$

a) Find the magnitude of $G(j \omega)$ at $\omega=10$
b) Find the magnitude of $G(j \omega)$ at $\omega=500$
c) Find the phase of $G(j \omega)$ at $\omega=700$
d) Is the system stable (by using the Bode plot)?

Solution. The Bode plot:
Bode Diagram

a)

$$
|G(j 10)|=\frac{5000}{\sqrt{10^{2}+70^{2}} \sqrt{10^{2}+500^{2}}}=-16.99 d B
$$

b)

$$
|G(j 500)|=\frac{5000}{\sqrt{500^{2}+70^{2}} \sqrt{500^{2}+500^{2}}}=-37.07 d B
$$

c)

$$
\angle G(j 700)=-\tan ^{-1}\left(\frac{700}{70}\right)-\tan ^{-1}\left(\frac{700}{500}\right)=-138.75^{\circ}(\text { Matlab }: \gg \operatorname{atand}())
$$

d) The magnitude at the frequency with the phase of -180° satisfies $20 \log |G|<0$. Therefore, system is stable!
2. The magnitude plot of a transfer function

$$
G(s)=\frac{K(1+0.5 s)(1+a s)}{s(1+s / 8)(1+b s)(1+s / 36)}
$$

is shown in the following figure.

Determine K, a, and b from the plot.

Solution.

- before $\omega<2$, the magnitude is

$$
20 \log |G|=20 \log \frac{K}{\omega}
$$

This line crosses the horizontal axis at $\omega=8$. So,

$$
20 \log \frac{K}{8}=0
$$

Then, $K=8$.

- The slope is increased at $\omega=2$ and $\omega=4$, which means we have two zeros at these points. So, $a=\frac{1}{4}$.
- The slope is decreased at $\omega=8, \omega=24$ and $\omega=36$, which means we have three poles at these points. So, $b=\frac{1}{24}$.

3. Sketch the Bode plot of the frequency response for the following transfer functions:
a)

$$
G=\frac{5\left(4 s^{2}+1.4 s+1\right)}{(s+3)^{2}}
$$

b)

$$
G=\frac{4(s+0.5)\left(s^{2}+3 s+2\right)}{(4 s+1)\left(9 s^{2}+4 s+1\right)(s+3)}
$$

Solution.

a) Break frequencies are at $\omega=0.5$ and $\omega=3$.

b) Break frequencies are at $\omega=0.5, \omega=1, \omega=2, \omega=0.25, \omega=0.33$ and $\omega=3$.

