# ELEC-C8201: Control Theory and Automation <br> Exercise 8 - Solutions 

The problems marked with an asterisk ( $\star$ ) are not discussed during the exercise session. The solutions are given in MyCourses and these problems belong to the course material.

1. Consider the single-input, single-output system described by

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =A \mathbf{x}(t)+B u(t), \\
y(t) & =C \mathbf{x}(t)
\end{aligned}
$$

Determine whether the system is controllable and observable when:
a) $A=\left[\begin{array}{cc}0 & 1 \\ 0 & -3\end{array}\right], \quad B=\left[\begin{array}{l}0 \\ 1\end{array}\right], \quad C=\left[\begin{array}{ll}0 & 2\end{array}\right]$.
b) $A=\left[\begin{array}{cc}-10 & 0 \\ 0 & -2\end{array}\right], \quad B=\left[\begin{array}{l}0 \\ 2\end{array}\right], \quad C=\left[\begin{array}{ll}1 & 0\end{array}\right]$.
c) $A=\left[\begin{array}{cc}0 & 1 \\ -1 & -2\end{array}\right], \quad B=\left[\begin{array}{c}-1 \\ 2\end{array}\right], \quad C=\left[\begin{array}{ll}1 & 0\end{array}\right]$.

## Solution.

a) Controllability:

$$
P_{c}=\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
1 & -3
\end{array}\right] \Rightarrow \operatorname{det}\left(P_{c}\right)=\left|\begin{array}{cc}
0 & 1 \\
1 & -3
\end{array}\right|=-1 \neq 0 \quad(\rightarrow \text { controllable })
$$

Observability:

$$
P_{o}=\left[\begin{array}{c}
C \\
C A
\end{array}\right]=\left[\begin{array}{cc}
0 & 2 \\
0 & -6
\end{array}\right] \Rightarrow \operatorname{det}\left(P_{o}\right)=0 \quad(\rightarrow \text { not observable })
$$

b) Controllability:

$$
P_{c}=\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
2 & -4
\end{array}\right] \Rightarrow \operatorname{det}\left(P_{c}\right)=0 \quad(\rightarrow \text { not controllable })
$$

Observability:

$$
P_{o}=\left[\begin{array}{c}
C \\
C A
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-10 & 0
\end{array}\right] \Rightarrow \operatorname{det}\left(P_{o}\right)=0 \quad(\rightarrow \text { not observable })
$$

Note that in this case, the input is only on $x_{2}$ and therefore $x_{1}$ cannot be controlled. Given, however, that $A$ is diagonal, we can easily see that $x_{1}$ goes to zero for whatever input and hence the system is stabilizable. Similarly, If state $x_{2}$ goes to zero, the system is detectable.
c) Controllability:

$$
P_{c}=\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{cc}
-1 & 2 \\
2 & -3
\end{array}\right] \Rightarrow \operatorname{det}\left(P_{c}\right)=\left|\begin{array}{cc}
-1 & 2 \\
2 & -3
\end{array}\right|=3-4=-1 \neq 0 \quad(\rightarrow \text { controllable })
$$

Observability:

$$
P_{o}=\left[\begin{array}{c}
C \\
C A
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \Rightarrow \operatorname{det}\left(P_{o}\right)=1 \quad(\rightarrow \text { observable })
$$

2. Consider the second-order system

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right] u(t), \\
& y(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \mathbf{x}(t)
\end{aligned}
$$

For what values of $k_{1}$ and $k_{2}$ is the system completely controllable?

## Solution.

$$
P_{c}=\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{cc}
k_{1} & k_{1}-k_{2} \\
k_{2} & -k_{1}+k_{2}
\end{array}\right]
$$

Therefore, the determinant is given by

$$
\operatorname{det}\left(P_{c}\right)=\left|\begin{array}{cc}
k_{1} & k_{1}-k_{2} \\
k_{2} & -k_{1}+k_{2}
\end{array}\right|=-k_{1}\left(k_{1}-k_{2}\right)-k_{2}\left(k_{1}-k_{2}\right)=-\left(k_{1}-k_{2}\right)\left(k_{1}+k_{2}\right)
$$

So, the system is completely controllable if and only if $\left|k_{1}\right| \neq\left|k_{2}\right|\left(\right.$ or $\left.k_{1}^{2} \neq k_{2}^{2}\right)$.
3. Consider the third-order system

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-8 & -5 & -3
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{l}
0 \\
0 \\
4
\end{array}\right] u(t), \\
& y(t)=\left[\begin{array}{lll}
2 & -4 & 0
\end{array}\right] \mathbf{x}(t)
\end{aligned}
$$

a) Verify that the system is observable.
b) Determine the observer gain matrix required to place the observer poles at $s_{1,2}=-1 \pm j$ and $s_{3}=-5$.

## Solution.

a) Observability:

$$
P_{o}=\left[\begin{array}{c}
C \\
C A \\
C A^{2}
\end{array}\right]=\left[\begin{array}{ccc}
2 & -4 & 0 \\
0 & 2 & -4 \\
32 & 20 & 14
\end{array}\right] \Rightarrow \operatorname{det}\left(P_{o}\right)=728 \neq 0 \quad(\rightarrow \text { observable })
$$

b) The desired characteristic equation is given by

$$
\begin{aligned}
p(s) & =[s-(-1+j)][s-(-1-j)](s+5) \\
& =\left[(s+1)^{2}+1\right](s+5) \\
& =\left(s^{2}+2 s+2\right)(s+5) \\
& =s^{3}+7 s^{2}+12 s+10
\end{aligned}
$$

1st way: Using the Ackermann's formula for the observer gain matrix,

$$
L=p(A) P_{o}^{-1}\left[\begin{array}{llll}
0 & 0 & \ldots & 1
\end{array}\right]^{T}=\ldots=\left[\begin{array}{c}
0.14 \\
-0.93 \\
0.79
\end{array}\right]
$$

where $p(A)$ is given by

$$
p(A)=A^{3}+7 A^{2}+12 A+10 I .
$$

2nd way: Using the determinant:

$$
|s I-(A-L C)|=\left|\left[\begin{array}{lll}
s & 0 & 0 \\
0 & s & 0 \\
0 & 0 & s
\end{array}\right]-\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-8 & -5 & -3
\end{array}\right]+\left[\begin{array}{l}
l_{1} \\
l_{2} \\
l_{3}
\end{array}\right]\left[\begin{array}{lll}
2 & -4 & 0
\end{array}\right]\right|
$$

4. Suppose that the vector differential equation describing the inverted pendulum is given by

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 9.8 & 0
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right] u(t)
$$

Assume that all state variables are available for measurement and use state variable feedback. Place the system characteristic roots at $s--2 \pm j,-5$, and -5 .

Solution. Consider the state variable feedback law $u=K \mathbf{x}$. Using the Ackermann's formula

$$
K=\left[\begin{array}{llll}
-14.2045 & -17.0455 & -94.0045 & -31.0455
\end{array}\right]
$$

5. A system is represented by the differential equation

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+y=\frac{d u}{d t}+u
$$

where $y=$ output and $u=$ intput.
a) Develop a state variable representation and show that it is a controllable system.
b) Define the state variables as $x_{1}=y$ and $x_{2}=d y / d t-u$, and determine whether the system is controllable.

## Solution.

a) In the first case:

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Therefore,

$$
P_{c}=\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right] \Rightarrow \operatorname{det}\left(P_{c}\right)=\left|\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right|=-1 \neq 0 \quad(\rightarrow \text { controllable })
$$

b) In the second case:

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right], \quad B=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Therefore,

$$
P_{c}=\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right] \Rightarrow \operatorname{det}\left(P_{c}\right)=\left|\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right|=1-1=0 \quad(\rightarrow \text { not controllable })
$$

Note: the controllability of a system depends on the definition of the state variables!
6. Consider the second-order system

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =\left[\begin{array}{cc}
1 & 2 \\
-6 & 12
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{c}
-5 \\
1
\end{array}\right] u(t), \\
y(t) & =\left[\begin{array}{ll}
4 & -3
\end{array}\right] \mathbf{x}(t)
\end{aligned}
$$

a) Verify that the system is observable and controllable.
b) Design a full-state feedback law and an observer by placing the closed-loop system poles at $s_{1,2}=-1 \pm j$ and the observer poles at $s_{1,2}=12$.

## Solution.

a) Controllability:

$$
P_{c}=\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{cc}
-5 & -3 \\
1 & 18
\end{array}\right] \Rightarrow \operatorname{det}\left(P_{c}\right)=-87 \neq 0 \quad(\rightarrow \text { controllable })
$$

Observability:

$$
P_{o}=\left[\begin{array}{c}
C \\
C A
\end{array}\right]=\left[\begin{array}{cc}
4 & -3 \\
22 & 44
\end{array}\right] \Rightarrow \operatorname{det}\left(P_{o}\right)=242 \neq 0 \quad(\rightarrow \text { observable })
$$

b) The controller gain matrix $K=\left[\begin{array}{ll}3.02 & 6.11\end{array}\right]$ places the closed-loop system poles at $s_{1,2}=-1 \pm j$, and the observer gain matrix $L=\left[\begin{array}{ll}2.38 & -1.16\end{array}\right]^{T}$ observer poles at $s_{1,2}=12$.

