ELEC-C8201: Control Theory and Automation

Exercise 8 - Solutions

The problems marked with an asterisk (\star) are not discussed during the exercise session. The solutions are given in MyCourses and these problems belong to the course material.

1. Consider the single-input, single-output system described by

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + Bu(t),$$

$$y(t) = C\mathbf{x}(t)$$

Determine whether the system is controllable and observable when:

a)
$$A = \begin{bmatrix} 0 & 1 \\ 0 & -3 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 2 \end{bmatrix}$.
b) $A = \begin{bmatrix} -10 & 0 \\ 0 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$.
c) $A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$, $B = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$.

Solution.

a) Controllability:

$$P_c = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 0 & 1\\ 1 & -3 \end{bmatrix} \Rightarrow \det(P_c) = \begin{vmatrix} 0 & 1\\ 1 & -3 \end{vmatrix} = -1 \neq 0 \quad (\rightarrow \text{ controllable})$$

Observability:

$$P_o = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & -6 \end{bmatrix} \Rightarrow \det(P_o) = 0 \quad (\rightarrow \text{ not observable})$$

b) Controllability:

$$P_c = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 0 & 0\\ 2 & -4 \end{bmatrix} \Rightarrow \det(P_c) = 0 \quad (\to \text{ not controllable})$$

Observability:

$$P_o = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -10 & 0 \end{bmatrix} \Rightarrow \det(P_o) = 0 \quad (\rightarrow \text{ not observable})$$

Note that in this case, the input is only on x_2 and therefore x_1 cannot be controlled. Given, however, that A is diagonal, we can easily see that x_1 goes to zero for whatever input and hence the system is **stabilizable**. Similarly, If state x_2 goes to zero, the system is **detectable**. c) Controllability:

$$P_c = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} -1 & 2\\ 2 & -3 \end{bmatrix} \Rightarrow \det(P_c) = \begin{vmatrix} -1 & 2\\ 2 & -3 \end{vmatrix} = 3 - 4 = -1 \neq 0 \quad (\rightarrow \text{ controllable})$$

Observability:

$$P_o = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow \det(P_o) = 1 \quad (\rightarrow \text{ observable})$$

2. Consider the second-order system

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} u(t),$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}(t)$$

For what values of k_1 and k_2 is the system completely controllable?

Solution.

$$P_c = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} k_1 & k_1 - k_2 \\ k_2 & -k_1 + k_2 \end{bmatrix}$$

Therefore, the determinant is given by

$$\det(P_c) = \begin{vmatrix} k_1 & k_1 - k_2 \\ k_2 & -k_1 + k_2 \end{vmatrix} = -k_1(k_1 - k_2) - k_2(k_1 - k_2) = -(k_1 - k_2)(k_1 + k_2)$$

So, the system is completely controllable if and only if $|k_1| \neq |k_2|$ (or $k_1^2 \neq k_2^2$).

3. Consider the third-order system

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -8 & -5 & -3 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix} u(t),$$
$$y(t) = \begin{bmatrix} 2 & -4 & 0 \end{bmatrix} \mathbf{x}(t)$$

- a) Verify that the system is observable.
- b) Determine the observer gain matrix required to place the observer poles at $s_{1,2} = -1 \pm j$ and $s_3 = -5$.

Solution.

a) Observability:

$$P_o = \begin{bmatrix} C\\CA\\CA^2 \end{bmatrix} = \begin{bmatrix} 2 & -4 & 0\\0 & 2 & -4\\32 & 20 & 14 \end{bmatrix} \Rightarrow \det(P_o) = 728 \neq 0 \quad (\rightarrow \text{ observable})$$

b) The desired characteristic equation is given by

$$p(s) = [s - (-1 + j)][s - (-1 - j)](s + 5)$$

= [(s + 1)² + 1](s + 5)
= (s² + 2s + 2)(s + 5)
= s³ + 7s² + 12s + 10

1st way: Using the Ackermann's formula for the observer gain matrix,

$$L = p(A)P_o^{-1} \begin{bmatrix} 0 & 0 & \dots & 1 \end{bmatrix}^T = \dots = \begin{bmatrix} 0.14 \\ -0.93 \\ 0.79 \end{bmatrix}$$

where p(A) is given by

$$p(A) = A^3 + 7A^2 + 12A + 10I.$$

2nd way: Using the determinant:

$$|sI - (A - LC)| = \begin{vmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{vmatrix} - \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -8 & -5 & -3 \end{vmatrix} + \begin{bmatrix} l_1 \\ l_2 \\ l_3 \end{vmatrix} \begin{bmatrix} 2 & -4 & 0 \end{bmatrix} \end{vmatrix}$$

4. Suppose that the vector differential equation describing the inverted pendulum is given by

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 9.8 & 0 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} u(t)$$

Assume that all state variables are available for measurement and use state variable feedback. Place the system characteristic roots at $s - 2 \pm j$, -5, and -5.

Solution. Consider the state variable feedback law $u = K\mathbf{x}$. Using the Ackermann's formula $K = \begin{bmatrix} -14.2045 & -17.0455 & -94.0045 & -31.0455 \end{bmatrix}$

5. A system is represented by the differential equation

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = \frac{du}{dt} + u$$

where y = output and u = intput.

- a) Develop a state variable representation and show that it is a controllable system.
- b) Define the state variables as $x_1 = y$ and $x_2 = dy/dt u$, and determine whether the system is controllable.

Solution.

a) In the first case:

$$A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Therefore,

$$P_c = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 0 & 1\\ 1 & -2 \end{bmatrix} \Rightarrow \det(P_c) = \begin{vmatrix} 0 & 1\\ 1 & -2 \end{vmatrix} = -1 \neq 0 \quad (\rightarrow \text{ controllable})$$

b) In the second case:

$$A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Therefore,

$$P_c = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 1 & -1\\ -1 & 2 \end{bmatrix} \Rightarrow \det(P_c) = \begin{vmatrix} 1 & -1\\ -1 & 1 \end{vmatrix} = 1 - 1 = 0 \quad (\rightarrow \text{ not controllable})$$

Note: the controllability of a system depends on the definition of the state variables!

6. Consider the second-order system

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 1 & 2\\ -6 & 12 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} -5\\ 1 \end{bmatrix} u(t),$$
$$y(t) = \begin{bmatrix} 4 & -3 \end{bmatrix} \mathbf{x}(t)$$

- a) Verify that the system is observable and controllable.
- b) Design a full-state feedback law and an observer by placing the closed-loop system poles at $s_{1,2} = -1 \pm j$ and the observer poles at $s_{1,2} = 12$.

Solution.

a) Controllability:

$$P_c = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} -5 & -3\\ 1 & 18 \end{bmatrix} \Rightarrow \det(P_c) = -87 \neq 0 \quad (\rightarrow \text{ controllable})$$

Observability:

$$P_o = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 22 & 44 \end{bmatrix} \Rightarrow \det(P_o) = 242 \neq 0 \quad (\rightarrow \text{ observable})$$

b) The controller gain matrix $K = \begin{bmatrix} 3.02 & 6.11 \end{bmatrix}$ places the closed-loop system poles at $s_{1,2} = -1 \pm j$, and the observer gain matrix $L = \begin{bmatrix} 2.38 & -1.16 \end{bmatrix}^T$ observer poles at $s_{1,2} = 12$.