
Differen al and Integral Calculus II  Jaime Pardo Herencia 

WEEK 1 – CLASS EXERCISES 

EXERCISE 1: Find the equation of the line passing though the points 𝑨 = (𝟏, 𝟎, 𝟐) and 𝑩 = (𝟓, 𝟒, 𝟏). Sketch the line. 

We can start by calculating the vector between the two points:  𝐴�⃗� = (5 − 1, 4 − 0, 1 − 2) = (4, 4, −1) 

Let’s now use the vector equation of the line using the point 𝐴 and the vector 𝐴�⃗�: 

𝑟(𝜆) = 𝐴 + 𝜆 𝐴�⃗� = (1, 0, 2) + 𝜆 (4, 4, −1) = (1 + 4𝜆, 4𝜆, 2 − 𝜆) 

We can now plot the two points in the 3D space and sketch the line by hand. 

Otherwise, using Maple:  plot3d([1+4t,4t,2-t],t = -5..5) 

 

EXERCISE 2: Sketch the following curves: 

(𝒂)  𝒙(𝒕) = 𝟑 𝐜𝐨𝐬(𝒕), 𝒚(𝒕) = 𝟓 𝐬𝐢𝐧(𝒕) for 𝟎 ≤ 𝒕 < 𝟐𝝅. What is this curve called? 

We see that the 𝑥 coordinate oscillates between −3 and 3, whereas the 𝑦 coordinate 

oscillates between −5 and 5. Using the identity cos (𝑡) + sin (𝑡) = 1, we can eliminate 

the parameter 𝑡 and we get the following equation, which corresponds to an ellipse: 

𝑥

3
+

𝑦

5
= 1   ⟹    

𝑥

9
+

𝑦

25
= 1 

We can try to locate certain points in order to sketch it by hand. Otherwise, using Maple: 

plot([3cos(t),5sin(t),t = 0 .. 2π])  

 

(𝒃)  𝒙(𝒕) = 𝒕 𝐜𝐨𝐬(𝒕), 𝒚(𝒕) = 𝒕 𝐬𝐢𝐧(𝒕), 𝒛(𝒕) = 𝒕 for 𝟎 ≤ 𝒕 ≤ 𝟕𝝅. 

The 𝑥 and 𝑦 coordinates resemble to the parametric equation of the circle. 

However, because they both have the factor 𝑡, the radius increases as 𝑡 

increases, that is, we have a spiral. Moreover, the 𝑧 coordinate translates the 

spiral along the 𝑧 axis, forming a cone. All this information and with the help of 

some points, it should be enough to sketch the curve by hand. Otherwise, using 

Maple:  plot3d([t*cos(t),t*sin(t),t],t = 0 .. 7𝜋). 

 

EXERCISE 3: Consider the parametric curve 𝒙(𝒕) = 𝐜𝐨𝐬(𝒕), 𝒚(𝒕) = 𝐜𝐨𝐬𝟐(𝒕) for −∞ < 𝒕 < ∞. 

(𝒂)  Sketch the curve and carefully describe the motion. Think carefully about the range of 𝒙(𝒕) and 𝒚(𝒕). 

We first have to realise that the values of 𝑥(𝑡) oscillate between −1 and 1, and the values for 𝑦(𝑡) oscillate between 

0 and 1. Giving different values to the parameter 𝑡, we realise that the curve corresponds to a parabola, which 



oscillates back and forth. The motion is repeated over and over again. We could sketch the graph of the curve by hand 

by giving values to 𝑡 and locating the points. Otherwise, using Maple: plot([cos(t),cos2(t),t = 0 .. 𝜋]). 

 
 

(𝒃)  Find the tangent vectors at the point 𝑨 = (𝟏 𝟐⁄ , 𝟏 𝟒⁄ ). Make a sketch and relate your answers to the direction 

of motion. 

The tangent vector to the curve at any point will be given by: 

𝑟⃗(𝑡) = 𝑥 (𝑡), 𝑦 (𝑡) = (− sin(𝑡) , −2 cos(𝑡) sin(𝑡)) = (− sin(𝑡) , − sin(2𝑡)) 

We need to find the value of the parameter 𝑡 for the point 𝐴. We have that cos(𝑡) = 1 2⁄ , which means that 𝑡 is either 

𝜋 3⁄ + 2𝜋𝑘 or − 𝜋 3⁄ + 2𝜋𝑘, where 𝑘 ∈ ℤ. By direct substitution, in the first case, for 𝑡 = 𝜋 3⁄ + 2𝜋𝑘, the tangent 

vector is 𝑟⃗ = − √3 2⁄ , − √3 2⁄ , which means that the motion of the parabola goes towards the left. On the second 

case, for 𝑡 = − 𝜋 3⁄ + 2𝜋𝑘, the tangent vector is 𝑟⃗ = √3 2⁄ , √3 2⁄  and the motion goes towards the right. 

 
 

(𝒄)  Find the tangent vector at the point 𝑩 = (𝟏, 𝟏). Does your answer make sense? Is the curve smooth at this point? 

In this case, the parameter 𝑡 will have the value 𝑡 = 2𝜋𝑘, with 𝑘 ∈ ℤ. Using the formula for tangent vector that we 

derived in question (𝑏), we get that 𝑟⃗(2𝜋𝑘) = (0, 0), which gives no information about the slope of the curve, since 

the curve is not smooth at this point, and it cannot have a tangent vector. When the curve gets to this point, it stops 

and changes direction. Thus, this vector indicates the velocity of the motion, which is indeed a smooth function. 

(𝒅)  Find the length of the curve. 

Since the curve is being overwritten infinitely many times, we only need to calculate the length of the curve that goes 

from point (−1, 1) to (1, 1), that is, when 𝑡 is, for example, between 0 and 𝜋: 

𝑟⃗ 

𝑟⃗ 



sin (𝑡) + 4 sin (𝑡) cos (𝑡)  𝑑𝑡  =  |sin(𝑡)| 1 + 4 cos (𝑡)  𝑑𝑡 

=  sin(𝑡) 1 + 4 cos (𝑡)  𝑑𝑡        𝑠𝑖𝑛𝑐𝑒 sin(𝑡) ≥ 0 𝑜𝑛 [0, 𝜋] 

=  −
1

2
 1 + 𝑥  𝑑𝑥         𝑙𝑒𝑡 𝑥 = 2 cos(𝑡)  |  𝑑𝑥 = −2 sin(𝑡)  𝑑𝑡 

=  
1

2
 1 + 𝑥  𝑑𝑥           𝑐ℎ𝑎𝑛𝑔𝑖𝑛𝑔 𝑡ℎ𝑒 𝑙𝑖𝑚𝑖𝑡𝑠 𝑜𝑓 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 

=  1 + 𝑥  𝑑𝑥         𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛 

In order to solve the integral above, let’s do a change of variables. Let 𝑥 = tan(𝑠) and also 𝑑𝑥 = sec (𝑠) 𝑑𝑠. Also 

remember that 1 + tan (𝑠) = sec (𝑠) 

1 + 𝑥  𝑑𝑥 = sec (𝑠) 1 + tan (𝑠)  𝑑𝑠 = sec (𝑠)  𝑑𝑠 

We now need to integrate by parts. Let 𝑢 = sec(𝑠) and 𝑑𝑣 = sec (𝑠)  𝑑𝑠. We then have 𝑑𝑢 = sec(𝑠) tan(𝑠)  𝑑𝑠 and 

𝑣 = tan(𝑠): 

sec (𝑠)  𝑑𝑠 = sec(𝑠) tan(𝑠) − sec(𝑠) tan (𝑠)  𝑑𝑠 

We can now write tan (𝑠) = sec (𝑠) − 1: 

sec (𝑠)  𝑑𝑠 = sec(𝑠) tan(𝑠) − sec(𝑠) (sec (𝑠) − 1)  𝑑𝑠 = sec(𝑠) tan(𝑠) − sec (𝑠)  𝑑𝑠 + sec(𝑠)  𝑑𝑠 

and rearranging: 

2 sec (𝑠)  𝑑𝑠 = sec(𝑠) tan(𝑠) + sec(𝑠)  𝑑𝑠    ⟹    sec (𝑠)  𝑑𝑠 =
1

2
 sec(𝑠) tan(𝑠) +

1

2
sec(𝑠)  𝑑𝑠 

We now need to solve the integral of sec(𝑠). In order to do that, multiply and divide by sec(𝑠) + tan(𝑠): 

sec(𝑠)  𝑑𝑠 =
sec(𝑠) (sec(𝑠) + tan(𝑠))

sec(𝑠) + tan(𝑠)
 𝑑𝑠 =

sec (𝑠) + sec(𝑠) tan(𝑠)

sec(𝑠) + tan(𝑠)
 𝑑𝑠 

Another change of variables: Let ℎ = sec(𝑠) + tan(𝑠), and therefore, 𝑑ℎ = (sec(𝑠) tan(𝑠) + sec (𝑠)) 𝑑𝑠: 

sec(𝑠)  𝑑𝑠 = ⋯ =
sec (𝑠) + sec(𝑠) tan(𝑠)

sec(𝑠) + tan(𝑠)
 𝑑𝑠 =

1

ℎ
 𝑑ℎ = ln|ℎ| = ln|sec(𝑠) + tan(𝑠)| 

Retracing our steps: 

sec (𝑠)  𝑑𝑠 =
1

2
 sec(𝑠) tan(𝑠) +

1

2
sec(𝑠)  𝑑𝑠 =

1

2
 sec(𝑠) tan(𝑠) +

1

2
 ln|sec(𝑠) + tan(𝑠)| 

Now, remembering that 𝑥 = tan(𝑠) and √1 + 𝑥 = sec(𝑠): 



1 + 𝑥  𝑑𝑥 = sec (𝑠)  𝑑𝑠 =
1

2
 sec(𝑠) tan(𝑠) +

1

2
 ln|sec(𝑠) + tan(𝑠)| =

𝑥

2
 1 + 𝑥 +

1

2
 ln  𝑥 + 1 + 𝑥   

Finally, the arc length of the curve is: 

1 + 𝑥  𝑑𝑥 =  
𝑥

2
 1 + 𝑥 +

1

2
 ln  𝑥 + 1 + 𝑥   

 

 

= √5 +
1

2
ln 2 + √5 −

1

2
 ln(1) = √5 +

1

2
ln 2 + √5 ≈ 2.958 𝑢 

 

EXERCISE 4: Consider the curve of intersection of the plane 𝒛 = 𝒚 and the parabolic cylinder 𝒚 = 𝟒 − 𝒙𝟐. 

(𝒂)  Find a parametric equation 𝒓(𝒕) = (𝒙(𝒕), 𝒚(𝒕), 𝒛(𝒕)) of the curve. 

We can parametrise the intersection curve by letting 𝑥(𝑡) = 𝑡. Our parametrised curve will then be: 

𝑟(𝑡) = (𝑡, 4 − 𝑡 , 4 − 𝑡 ) 

(𝒃)  Find the arc length of the part of the curve that lies above the 𝒙𝒚-plane. 

As we only want to consider the curve above the 𝑥𝑦-plane, we will only consider the interval where −2 ≤ 𝑡 ≤ 2. 

The modulus of the derivative vector is: 

|𝑟 (𝑡)| = 𝑥 (𝑡) + 𝑦 (𝑡) + 𝑧 (𝑡) = 1 + (−2𝑡) + (−2𝑡) = 1 + 8𝑡  

and therefore, the arc length of the curve is calculated as: 

|𝑟 (𝑡)| 𝑑𝑡 = 1 + 8𝑡  𝑑𝑡 = 2 1 + 8𝑡  𝑑𝑡 

where the last equality comes from realising that the function is even. We can solve this integral the same way as in 

the previous exercise. However, in this case let’s use hyperbolic functions to learn another method. Let’s do the 

following change of variables: Let √8𝑡 = sinh(𝑢) and therefore √8 𝑑𝑡 = cosh(𝑢)  𝑑𝑢. Also remember that 

cosh (𝑢) − sinh (𝑢) = 1: 

1 + 8𝑡  𝑑𝑡 = 1 + sinh (𝑢) 
cosh(𝑢)

√8
 𝑑𝑢 = cosh(𝑢) 

cosh(𝑢)

√8
 𝑑𝑢 =

1

√8
 cosh (𝑢)  𝑑𝑢 

We can write the hyperbolic cosine as: 

cosh(𝑢) =
𝑒 + 𝑒

2
 

and therefore: 

1

√8
 cosh (𝑢)  𝑑𝑢 =

1

2√2
 

𝑒 + 𝑒

2
 𝑑𝑢 =

1

8√2
 (𝑒 + 2 + 𝑒 ) 𝑑𝑢 =

1

8√2
 

𝑒

2
+ 2𝑢 −

𝑒

2
 

Now, remembering that sinh(2𝑢) = 2 sinh(𝑢) cosh(𝑢): 

1

8√2
 

𝑒

2
+ 2𝑢 −

𝑒

2
=

1

8√2
 (2𝑢 + sinh(2𝑢)) =

1

8√2
 (2𝑢 + 2 sinh(𝑢) cosh(𝑢)) 



Retracing our steps and, once again, keeping into account that cosh (𝑢) − sinh (𝑢) = 1: 

1

√8
 cosh (𝑢)  𝑑𝑢 =

1

4√2
 𝑢 + sinh(𝑢) 1 + sinh (𝑢)  

Now, since sinh(𝑢) = √8𝑡, then 𝑢 = arcsinh √8𝑡 = ln √8𝑡 + √1 + 8𝑡 . That is: 

1 + 8𝑡  𝑑𝑡 =
1

√8
cosh (𝑢)  𝑑𝑢 =

1

4√2
 𝑢 + sinh(𝑢) 1 + sinh (𝑢) =

1

4√2
 ln √8𝑡 + 1 + 8𝑡 + 𝑡 8 + 64𝑡  

Finally, the arc length will be: 

2 1 + 8𝑡  𝑑𝑡 =
1

2√2
  ln √8𝑡 + 1 + 8𝑡2 + 𝑡 8 + 64𝑡2 

 

 
=

1

2√2
 ln 4√2 + √33 + 4√66 ≈ 12.3496 𝑢 

 

EXERCISE 5: Consider the curve with parametric equations 𝒓(𝒕)  =  𝐜𝐨𝐬(𝒕) , 𝐬𝐢𝐧(𝒕) , 𝒕𝟐  for 𝟎 ≤ 𝒕 ≤ 𝟔𝝅. 

(𝒂)  Sketch the curve and the tangent vector to the curve when 𝒕 = 𝝅 𝟒⁄ . 

We have a unit circle in the 𝑥𝑦-plane that is being translated along the 𝑧 

axis. We can try to locate certain points in order to sketch it by hand. 

Otherwise, using Maple and then drawing the tangent vector: 

with(plots) 

with(plottools) 

a := plot3d([cos(t),sin(t),t2], t = 0 .. 6𝜋) 

b := arrow( 〈
√

,
√

, 〉, 〈−
√

,
√

, 〉, colour = red ) 

 

(𝒃)  Compute the tangent vector at 𝒕 = 𝝅 𝟒⁄ . Does your sketch match the computation? 

𝑟⃗(𝑡) = 𝑥 (𝑡), 𝑦 (𝑡), 𝑧 (𝑡) = (− sin(𝑡) , cos(𝑡) , 2𝑡) 

By substituting 𝑡 = 𝜋 4⁄ , we get that: 

𝑟⃗(𝑡) = − sin
𝜋

4
, cos

𝜋

4
, 2 ∗

𝜋

4
= −

1

√2
,

1

√2
,
𝜋

2
 

The direction of such vector seems to match with that of our drawing. 

 

(𝒄)  Compute the arc length of the curve. 

The modulus of the derivative vector is: 

|𝑟 (𝑡)| = 𝑥 (𝑡) + 𝑦 (𝑡) + 𝑧 (𝑡) = sin (𝑡) + cos (𝑡) + (2𝑡) = 1 + 4𝑡  

and therefore, the arc length of the curve is calculated as: 



1 + 4𝑡  𝑑𝑡 

In order to solve the integral above, let 2𝑡 = 𝑥 and therefore 2 𝑑𝑡 = 𝑑𝑥: 

1 + 4𝑡  𝑑𝑡 =
1

2
 1 + 𝑥  𝑑𝑥 

We already calculated how to solve this integral in exercise 3d, so the arc length is: 

1

2
 1 + 𝑥  𝑑𝑥 =

1

2
  

𝑥

2
 1 + 𝑥 +

1

2
 ln  𝑥 + 1 + 𝑥   

 

 

=
1

2
  6𝜋 1 + 144𝜋 +

1

2
 ln  12𝜋 + 1 + 144𝜋   = 

= 3𝜋 1 + 144𝜋 +
1

4
 ln 12𝜋 + 1 + 144𝜋 ≈ 356.511 𝑢 

 

EXERCISE 6: Consider the function 𝒇(𝒙, 𝒚) = 𝒙𝟐 + 𝟐𝒚𝟐 

(𝒂)  Sketch the graph of 𝒇(𝒙, 𝒚). That is, the surface determined by 𝒛 = 𝒇(𝒙, 𝒚). 

This is a paraboloid with elliptical cross-section determined by the equation 

𝑥 + 2𝑦 = 𝑐 for any constant 𝑐 > 0. We can use Maple in order to plot it: 

plot3d(x2 + 2y2) 
 

(𝒃)  Find and sketch the level curves 𝒇 = −𝟏, 𝒇 = 𝟎, 𝒇 = 𝟏, 𝒇 = 𝟐 and 𝒇 = 𝟏𝟎. 

The level curves are ellipses with equation 𝑥 + 2𝑦 = 𝑐 for any constant 𝑐 > 0. 

The level curve 𝑓 = −1 is thus empty. Here’s a plot of the other four level curves: 

with(plots) 

contourplot(x2 + 2y2,contours = [-1,0,1,2,10]) 

 

EXERCISE 7: Consider the function 𝒇(𝒙, 𝒚) = 𝒙𝟐 − 𝟐𝒚𝟐 

(𝒂)  Sketch the graph of 𝒇(𝒙, 𝒚). That is, the surface determined by 𝒛 = 𝒇(𝒙, 𝒚). 

This is a hyperboloid with hyperbolic cross-section determined by the equation 

𝑥 − 2𝑦 = 𝑐 for any constant 𝑐. We can use Maple in order to plot it:  

plot3d(x2 - 2y2)  

 

(𝒃)  Find and sketch the level curves 𝒇 = −𝟐, 𝒇 = 𝟎, 𝒇 = 𝟐 and 𝒇 = 𝟏𝟎. 

The level curves are hyperbolas with equation 𝑥 − 2𝑦 = 𝑐 for any constant 𝑐: 

with(plots) 

contourplot(x2 - 2y2,contours = [-2,0,2,10]) 



 

 

EXERCISE 8: You are given two sets of level curves: one for a cone and one for a paraboloid. Which one is which? 

Justify your answer. 

 

Figure 1: exercise 14.1.7 in Guichard’s Calculus text. 

The one on the left corresponds to a paraboloid, since the level curves are closer and closer each time, which means 

that the slope of the function is increasing. On the other hand, the one on the right represents a cone because the 

level curves are evenly separated. That is, the level curves could correspond respectively to the following functions: 

 

      


