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WEEK 4 – CLASS EXERCISES 

EXERCISE 1: A flat circular plate has the shape of the region 𝒙𝟐 + 𝒚𝟐 ≤ 𝟏. The plate (including the boundary 𝒙𝟐 +

𝒚𝟐 = 𝟏) is heated so that the temperature 𝑻(𝒙, 𝒚) at any point (𝒙, 𝒚) is given by 𝑻(𝒙, 𝒚) = 𝒙𝟒 − 𝟒𝒙𝟐 + 𝟐𝒚𝟐. Locate 

the hottest and coldest points of the plate and determine the temperature at each of these points. 

Interior: Let’s start by finding the critical points of the function in the interior, that is, in the region 𝑥 + 𝑦 < 1. The 

critical points of the function 𝑇(𝑥, 𝑦) are those in which the gradient of 𝑇 is the 

(0, 0) vector. That is: 

∇𝑇 = 0   ⟹    (4𝑥 − 8𝑥, 4𝑦) = (0, 0)    ⟹      
4𝑥 (𝑥 − 2) = 0

4𝑦 = 0                 
 

Therefore, the critical points inside the plate are attained when 𝑦 = 0 and either 

𝑥 = 0 or 𝑥 = ±√2. Since we have the constraint 𝑥 + 𝑦 < 1, the only possible 

extremum inside the plate is (0,0), with a temperature of 𝑇(0,0) = 0. 

Boundary: In order to study the possible extrema in the boundary let’s use the method of Lagrange multipliers, where 

our constraint is 𝑔(𝑥, 𝑦) = 0, where 𝑔(𝑥) = 𝑥 + 𝑦 − 1. Let’s look for the points where: 

∇𝑇 = 𝜆∇𝑔   ⟹    (4𝑥 − 8𝑥, 4𝑦) = 𝜆 (2𝑥, 2𝑦)    ⟹      

4𝑥 (𝑥 − 2) = 2𝜆𝑥

4𝑦 = 2𝜆𝑦                 

𝑥 + 𝑦 = 1            

  ⟹      

2𝑥 (2𝑥 − 4 − 𝜆) = 0     (1)

2𝑦 (2 − 𝜆) = 0                  (2)

𝑥 + 𝑦 = 1                        (3)

 

From equation (2), we know that either 𝑦 = 0 or 𝜆 = 2. In the case 𝑦 = 0, from equation (3) we would get 𝑥 = ±1. 

In the case of 𝜆 = 2, from equation (1) we get that either 𝑥 = 0 and then by (3) 𝑦 = ±1, or 𝑥 = ±√3, but the latter 

does not lie on the boundary and will never satisfy the third equation. Therefore, the possible extrema in the boundary 

are the points (0, ±1), with a temperature 𝑇(0, ±1) = 2, and the points (±1, 0), with a temperature 𝑇(±1, 0) = −3. 

By comparing the values at each of the points that we obtained in both the interior and the boundary, we can finally 

state that the coldest points in the plate will be (±1, 0) with a temperature of −3, and the hottest ones will be (0, ±1), 

with a temperature of 2. 

 

 

 

We could have also studied the boundary of the function by reducing it to one variable. We would then have: 

𝑇(𝑥, 𝑦) = 𝑥 − 4𝑥 + 2(1 − 𝑥 ) = 𝑥 − 4𝑥 + 2 − 2𝑥 = 𝑥 − 6𝑥 + 2 = 𝑠 − 6𝑠 + 2     where we let 𝑠 = 𝑥  

Since 𝑠 = 𝑥  can only be between 0 and 1 so that the point is inside the plate, we then have to study the critical 

points of the function 𝑓(𝑠) = 𝑠 − 6𝑠 + 2 in the interval 𝑠 ∈ [0, 1]. However, we have that 𝑓 (𝑠) = 2𝑠 − 6 = 0 if 

and only if 𝑠 = 3, which is outside of the allowed range for 𝑠. This implies that the function has no critical points in 

(0,1), so we are only left with the boundaries: when 𝑠 = 1, we then have the points (±1, 0), and when 𝑠 = 0, we 

have (0, ±1). We can therefore calculate its temperatures and conclude the problem as we did before. 

 



EXERCISE 2: Use the method of Lagrange multipliers to find the absolute extrema of the function 𝒇(𝒙, 𝒚) = 𝟒𝒙𝒚 on 

the region 𝟒𝒙𝟐 + 𝒚𝟐 ≤ 𝟖. 

Interior: The extrema of the function 𝑓(𝑥, 𝑦) are those in which: 

∇𝑓 = 0   ⟹    (4𝑦, 4𝑥) = (0, 0)    ⟹      
4𝑦 = 0

4𝑥 = 0
 

The only solution is the point (0, 0), where we have 𝑓(0, 0) = 0. 

Boundary: We can use Lagrange multipliers by applying the constraint 𝑔(𝑥, 𝑦) = 0, where 𝑔(𝑥) = 4𝑥 + 𝑦 − 8: 

∇𝑓 = 𝜆∇𝑔   ⟹    (4𝑦, 4𝑥) = 𝜆 (8𝑥, 2𝑦)    ⟹      

4𝑦 = 8𝜆𝑥       

4𝑥 = 2𝜆𝑦        

4𝑥 + 𝑦 = 8

 ⟹      

𝑦 = 2𝜆𝑥                 (1)

2𝑥 = 𝜆𝑦                 (2)

4𝑥 + 𝑦 = 8       (3)

 

By combining equations (1) and (2), we get that 𝑦 = 𝜆 𝑦, which implies that 

either 𝑦 = 0, which leads to the point (0, 0), or 𝜆 = 1. Since the point (0, 0) 

does not satisfy equation (3), or in other words, it is not on the boundary, we are 

only left with the case 𝜆 = 1, that is, 𝜆 = ±1. This leads to 𝑦 = ±2𝑥, which, by 

substituting in equation (3), we get the points (±1, ±2). 

By calculating evaluating the function 𝑓 at those four points and comparing their 

values to the point (0, 0) which we obtained previously, we can conclude that 

the absolute maxima are (1, 2) and (−1, −2), with a value of 𝑓(1, 2) = 𝑓(−1, −2) = 8, and the absolute minima are 

(1, −2) and (−1, 2), with a value of 𝑓(1, −2) = 𝑓(−1, 2) = −8. 

 

EXERCISE 3: Let 𝒂𝟏, 𝒂𝟐, …, 𝒂𝒏 be positive numbers: 

(𝒂)  Find the maximum value of the expression 𝒂𝟏𝒙𝟏 + 𝒂𝟐𝒙𝟐 + ⋯ + 𝒂𝒏𝒙𝒏 if the variables 𝒙𝟏, 𝒙𝟐, …, 𝒙𝒏 are restricted 

so that the sum of their squares is one. 
 

We can use Lagrange multipliers with the following constraint: 

𝑔(𝑥 , 𝑥 , … , 𝑥 ) = 𝑥 + 𝑥 + ⋯ + 𝑥 − 1 = 𝑥 − 1 = 0   ⟹    𝑥 = 1 

Let us define 𝑓(𝑥 , 𝑥 , … , 𝑥 ) = 𝑎 𝑥 + 𝑎 𝑥 + ⋯ + 𝑎 𝑥 = ∑ 𝑎 𝑥 . We then want: 

∇𝑓 = 𝜆∇𝑔   ⟹     (𝑎 , 𝑎 , … , 𝑎 ) = 𝜆 (2𝑥 , 2𝑥 , … , 2𝑥 )    ⟹      
2𝜆𝑥 = 𝑎      ∀𝑖 ∈ ℕ and 𝑖 ≤ 𝑛

𝑥 + 𝑥 + ⋯ + 𝑥 = 1             
 

By rearranging the first equation, we get 𝑥 =  , and by substituting in the second equation: 

𝑥 + 𝑥 + ⋯ + 𝑥 =
𝑎

2𝜆
+

𝑎

2𝜆
+ ⋯ +

𝑎

2𝜆
=

1

4𝜆
𝑎 = 1 



which then means that: 

1

4𝜆
𝑎 = 1   ⟹    𝜆 =

1

4
 𝑎    ⟹    𝜆 = ±

1

2
 𝑎  

 

We get the following expression for 𝑥 : 

𝑥 =
𝑎

2𝜆
= 𝑥 = ± 𝑎  𝑎  

Note that, since the coefficients 𝑎  are positive, we have found two points which are symmetric with respect to the 

origin. We now just need to evaluate the function at those two points. Let us denote the point with positive coefficients 

as (+) and the one with negative coefficients as (−). Then: 

𝑓(+) = 𝑎 𝑥 = 𝑎 𝑎 = 𝑎 𝑎 = 𝑎  

𝑓(−) = 𝑎 𝑥 = −𝑎 𝑎 = − 𝑎 𝑎 = − 𝑎  

We can therefore conclude that the maximum of the function is obtained at the point with coordinates 

𝑥 = 𝑎  𝑎 , 

where the function has a value of 

𝑓(+) = 𝑎  

 

(𝒃)  What is the minimum value of 𝒂𝟏𝒙𝟏 + 𝒂𝟐𝒙𝟐 + ⋯ + 𝒂𝒏𝒙𝒏 in this case? 

We can directly see from part (𝑎) that the minimum will be attained at the point with coordinates 

𝑥 = − 𝑎  𝑎 , 

where the function has a value of 

𝑓(−) = − 𝑎  

 

(𝒄)  Give an interpretation of your results using the dot product in the case 𝒏 = 𝟐. 

Our function is now 𝑓(𝑥 , 𝑥 ) = 𝑎 𝑥 + 𝑎 𝑥 , which can be defined as an inner product between the vectors �⃗� and �⃗�: 



𝑓(�⃗�) = �⃗� · �⃗� = ‖�⃗�‖‖�⃗�‖ cos 𝛼 

The restriction of the sum of the squares of the components of 𝑥 being 1 implies that 𝑥 is a unit vector, that is, ‖�⃗�‖ =

1. Since also ‖�⃗�‖ is fixed and determined by the coefficients of the function, the value of our function relies on the 

cosine of the angle between both vectors. Therefore, the absolute maximum is attained when 𝛼 = 0, that is, both 

vectors point in the same direction, and, similarly, the absolute minimum occurs when they point in opposite 

directions. We can therefore calculate 𝑥 as follows: 

�⃗� · �⃗� = ± ‖�⃗�‖    ⟹    �⃗� = ±
�⃗�

‖�⃗�‖
= ±

(𝑎 , 𝑎 )

𝑎 + 𝑎
 

 

 

 

EXERCISE 4: Find approximate solutions of the following system of equations: 

  
𝒙𝟐 + 𝒚𝟐 − 𝟏 = 𝟎

𝒚 − 𝒆𝒙 = 𝟎          
 

For that, we can program the Newton’s Method on a computer (for example, using Maple, Python, MatLab) to 

generate the required approximations. In the exercise class you could try to program this or just discuss how you 

would implement practically this using Newton’s method. 

Let us first remember how Newton’s method works: 

We start by defining a matrix 𝐹 containing both functions 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦 − 1 and 𝑔(𝑥, 𝑦) = 𝑦 − 𝑒  and 

calculating its Jacobian matrix 𝐽 and its inverse 𝐽 . We define our starting point 𝑃 (𝑥 , 𝑦 ) and approximate the 

solution by iterating as many times as we want with the next formula: 

𝑃 = 𝑃 − 𝐽 (𝑃 ) ∗ 𝐹(𝑃 ) 

Note that the system of equations above has two solutions. However, by applying this method to some initial point 

𝑃 , we will only reach one of them. We need to try with different initial points in order to be able to get all the solutions. 

Below you can see the code in Maple, where we have chosen 𝑃 (2, 2) as a starting point and we get the approximate 

solution (9.95 · 10 , 1.0000), while the exact solution is (0, 1). 

 

 

REMARK: Recall that the directional derivative is the dot product of the gradient vector and the 
corresponding vector. Under the constraint of the vector being an unit vector, notice that this 
interpretation is the same as the one for proving that the gradient vector is the direction of maximum 
increase of a function. 



    

    

 

Similarly, here’s the code in MatLab, where we have now used 𝑃 (−2, 2) as an initial point. We now get the 

approximate solution (−0.916, 0.339), and the error with the exact solution is less than 0.005 %. 

 

 

 
clearvars 
close all 
clc 
 
syms x y f(x,y) g(x,y) 
f(x,y) = x^2 + y^2 - 1; 
g(x,y) = y - exp(x); 
F = [f(x,y); g(x,y)]; 
J = jacobian(F,[x,y]); 
Jinv = inv(J); 
disp("Let's use Newton's method to solve the following system of equations:") 
disp('Let us define f us f(x,y) = ' + string(f) + ' and g as g(x,y) = ' + string(g)); 
disp(' ') 
 
x_0 = -2; 
y_0 = 2; 
loops = 5; 
disp(['Starting from the point (',num2str(x_0),',',num2str(y_0),') and iterating ',num2str(loops),' times:']) 
for i = 1:loops 
    A = [x_0;y_0] - subs(Jinv,[x,y],[x_0,y_0]) * subs(F,[x,y],[x_0,y_0]); 
    new = subs(A,[x,y],[x_0,y_0]); 
    x_0 = double(new(1,1)); 
    y_0 = double(new(2,1)); 
    disp(['Iteration ',num2str(i),': We now have x = ',num2str(x_0,8),' and y = ',num2str(y_0,8)]) 
end 
 
[solx,soly] = vpasolve([f,g],[-2,2]); 
errorx = abs(solx - x_0) * 100 / x_0; 
errory = abs(soly - y_0) * 100 / y_0; 
maxerror = double(max(errorx, errory)); 
disp(' ') 
disp(['With a maximum relative error of  ',num2str(maxerror,6),' %, we can conclude that one solution to']) 
disp(['the system of equations is the point (',num2str(x_0,8),',',num2str(y_0,8),')']) 

 



 

 

We can now plot the intersection of the two curves with the plane 𝑧 = 0. Indeed, we can clearly see that the 

approximations that we calculated before are very close to the exact solutions of our system of equations, which 

correspond to the points of intersection of the two curves. 

 

 

 
 

 


