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WEEK 6 – CLASS EXERCISES 

EXERCISE 1: Find the surface area of the part of the surface 𝒛 = 𝒙𝟐 + 𝟐𝒚 that lies above the triangular region in the 

𝒙𝒚-plane with vertices (𝟎, 𝟎), (𝟏, 𝟎) and (𝟏, 𝟏). 

Let us consider the function 𝑧(𝑥, 𝑦) = 𝑥 + 2𝑦 and let’s calculate its first-order partial derivatives: 

𝜕𝑧

𝜕𝑥
= 2𝑥     and     

𝜕𝑧

𝜕𝑦
= 2 

In order to determine the bounds of the double integral, let us first plot the 

integration area. From the picture on the right, we can see that the 𝑥 variable goes 

from 0 to 1 and the 𝑦 values starts at 𝑦 = 0 and is bounded from above by the line 

𝑦 = 𝑥. Now, let 𝑛 be the normal vector to the surface: 

𝑛 = −
𝜕𝑧

𝜕𝑥
, −

𝜕𝑧

𝜕𝑦
, 1 = (−2𝑥, −2, 1) 

Then, the area of the surface 𝑧(𝑥, 𝑦) will be: 

‖𝑛‖ 𝑑𝑦 𝑑𝑥 = 4𝑥 + 4 + 1 𝑑𝑦 𝑑𝑥 = 4𝑥 + 5 𝑑𝑦 𝑑𝑥 =  𝑦 4𝑥 + 5 
   

   
 𝑑𝑥 

= 𝑥 4𝑥 + 5 𝑑𝑥 =  
1

12
 (4𝑥 + 5)  

 

 

=
9 − 5

12
=

27 − 5√5

12
 𝑢  

 

EXERCISE 2: Let 𝑬 denote the solid bounded by the surfaces 𝒛 = 𝟎, 𝒙 = 𝟎, 𝒚 = 𝟐 and 𝒛 = 𝒚 − 𝟐𝒙. 

(𝒂)  Sketch the solid 𝑬. 

 
 

(𝒃)  Sketch the projections of the solid 𝑬 on the 𝒙𝒚 plane, the 𝒚𝒛 plane and the 𝒙𝒛 plane. 

Let’s use Maple in order to plot the projections of the solid on the planes. Note that the intersection of the plane 𝑧 =

𝑦 − 2𝑥 with the 𝑥𝑦 plane (𝑧 = 0) is the line 𝑦 = 2𝑥. Similarly, the intersections of such plane with the 𝑦𝑧 (𝑥 = 0) 

and 𝑥𝑧 (𝑦 = 2) plane are 𝑧 = 𝑦 and 𝑧 = 2 − 2𝑥 respectively. Therefore: 



                            

 
 

(𝒄)  Express the integral 

 𝒇(𝒙, 𝒚, 𝒛) 𝒅𝑽
 

𝑬

 

as an iterated integral in six different ways. Of course, since 𝒇 is not given, you cannot evaluate these integrals. 

By looking at the graphs in parts (𝑎) and (𝑏), we can easily determine the limits for the integrals: 

 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑥
 

𝑑𝑦 𝑑𝑧                        𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑥
 

𝑑𝑧 𝑑𝑦 

 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑦 𝑑𝑥 𝑑𝑧                       𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑦 𝑑𝑧 𝑑𝑥 

𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑥 𝑑𝑦                       𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥 

 

EXERCISE 3: Consider the solid region 𝑬 that lies below 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝟒 and above 𝒛 = 𝒙𝟐 + 𝒚𝟐 and is in the first 

octant, that is, 𝒙 ≥ 𝟎, 𝒚 ≥ 𝟎 and 𝒛 ≥ 𝟎. 

(𝒂)  Sketch the solid 𝑬. 

 

 

 

         

(𝒃)  Find the volume of 𝑬 using cylindrical coordinates. 

We can determine the intersection of the two surfaces with a system of equations: 

  
𝑥 + 𝑦 + 𝑧 = 4

𝑧 = 𝑥 + 𝑦        
    ⟹    𝑥 + 𝑦 + 𝑥 + 𝑦 = 4   ⟹    2𝑥 + 2𝑦 = 4   ⟹    𝑥 + 𝑦 = 2 

                                 𝑥𝑦 𝑝𝑙𝑎𝑛𝑒                                           𝑦𝑧 𝑝𝑙𝑎𝑛𝑒                                             𝑥𝑧 𝑝𝑙𝑎𝑛𝑒 



The intersection of the two curves is therefore a circle of radius √2. Therefore, we will integrate between 𝑟 = 0 and 

𝑟 = √2. Since we are in the first octant, the angle 𝜃 will go from 𝜃 = 0 to 𝜃 =  . The 𝑧 coordinate is bounded from 

below by the equation of the cone, that is, 𝑧 = 𝑥 + 𝑦 = 𝑟, and from above by 𝑧 = 4 − 𝑥 − 𝑦 = √4 − 𝑟 . 

Therefore, the volume of the solid 𝐸 will be: 

𝑟 𝑑𝑧
√

𝑑𝑟
√

𝑑𝜃 = 𝑟 4 − 𝑟 − 𝑟  𝑑𝑟
√

𝑑𝜃 =  −
1

3
 (4 − 𝑟 ) −

𝑟

3
 

   

   √

𝑑𝜃 

−
2

3
−

2√2

3
+

4

3
 𝑑𝜃 =

8

3
−

4√2

3
 𝑑𝜃 =

𝜋

2
 

8

3
−

4√2

3
=

2𝜋

3
 2 − √2  𝑢  

 

(𝒄)  Find the volume of 𝑬 using spherical coordinates. 

Since the angle of the cone is 𝜙 =  and the radius of the sphere is 𝜌 = 2, then the volume of the solid 𝐸 can also be 

calculated with the following integral: 

𝜌 sin 𝜙  𝑑𝜌
√

𝑑𝜙 𝑑𝜃 = sin 𝜙  
𝜌

3
 

 

 

𝑑𝜙 𝑑𝜃 =  
8

3
 sin 𝜙 𝑑𝜙 𝑑𝜃 =   −

8

3
cos 𝜙 

 

 

𝑑𝜃 

= −
8

3
cos

𝜋

4
− cos 0 𝑑𝜃 = −

8

3

√2

2
− 1 𝑑𝜃 = −

8𝜋

6

√2

2
− 1 =

2𝜋

3
 2 − √2  𝑢  

 

EXERCISE 4: Set up an integral in cylindrical coordinates to represent the volume of the region in the first octant, that 

is, 𝒙 ≥ 𝟎, 𝒚 ≥ 𝟎 and 𝒛 ≥ 𝟎, that lies above the 𝒙𝒚-plane, below the plane 𝒛 = 𝒚 − 𝒙 and inside the cylinder 𝒙𝟐 + 𝒚𝟐 =

𝟒. Evaluate the integral. 

Let’s try to determine the bounds for the integral from the graph on the right. Since the cylinder has a radius of 2, we 

will then integrate 𝑟 from 0 to 2. The range for the angle 𝜃 can be determined form the equation of the plane: since 

𝑧 = 𝑦 − 𝑥 = 𝑟 (sin 𝜃 − cos 𝜃) and 𝑧 ≥ 0, then we have sin 𝜃 − cos 𝜃 ≥

0, which is the case for ≤ 𝜃 ≤  . Finally, the 𝑧 coordinate is bounded 

from above by the plane 𝑧 = 𝑦 − 𝑥 = 𝑟 (sin 𝜃 − cos 𝜃). Therefore, the 

volume of the solid will be: 

𝑟 𝑑𝑧
( )

𝑑𝑟 𝑑𝜃
 

 

= 𝑟  (sin 𝜃 − cos 𝜃) 𝑑𝑟 𝑑𝜃
 

 

 

=  (sin 𝜃 − cos 𝜃)  
𝑟

3
 

   

   

𝑑𝜃
 

 

=  
8

3
 (sin 𝜃 − cos 𝜃) 𝑑𝜃

 

 

 

=  
8

3
(− cos 𝜃 − sin 𝜃) 

 

 

=
8

3
−1 +

√2

2
+

√2

2
=

8

3
√2 − 1  𝑢  



EXERCISE 5: Let 𝑬 be the solid region that lies inside the sphere 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝟐 and above the plane 𝒛 = 𝟏. Let 

𝒅(𝒙, 𝒚, 𝒛) = 𝒛𝟐 be the density of 𝑬. Sketch 𝑬 and write a triple integral 

in spherical coordinates that gives the mass of 𝑬. You do not have to 

evaluate the integral. 

The bounds of integration for the angle 𝜃 are very straightforward: we 

will need to integrate from 𝜃 = 0 to 𝜃 = 2𝜋. However, the bounds of 

the other integrals seem to be a bit harder. Let us then determine the 

intersection of the two surfaces: by substituting 𝑧 = 1 in the equation 

of the sphere, we get that the curve of intersection is a circumference 

𝑥 + 𝑦 = 1, that is, it has a radius of 𝑟 = 1. The projection of the 

solid on the 𝑥𝑧 plane will then be the following: 

Now, we can easily see from the drawing that we need to integrate the angle 𝜙, from 

𝜙 = 0 until 𝜙 = arccos
√

=  . Regarding the radius 𝜌, it is obvious that the upper 

bound will be determined by the radius of the sphere 𝜌 = √2. On the other hand, the 

lower bound will then be determined by the equation of the plane: 

𝑧 = 𝜌 cos 𝜙 = 1   ⟹    𝜌 =
1

cos 𝜙
 

Also, we can rewrite the density function in spherical coordinates as: 𝑑(𝜌, 𝜃, 𝜙) = 𝑧 = (𝜌 cos 𝜙)  

Therefore, the volume of the solid region 𝐸 can be calculated as: 

 𝑑(𝜌, 𝜃, 𝜙) 𝜌 sin 𝜙  𝑑𝜌
√

𝑑𝜙 𝑑𝜃 =  (𝜌 cos 𝜙)  𝜌 sin 𝜙  𝑑𝜌
√

𝑑𝜙 𝑑𝜃 

=  𝜌 cos 𝜙 sin 𝜙  𝑑𝜌
√

 

𝑑𝜙 𝑑𝜃 


