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1) Physics identification. System length and timescales. 

2) Mathematical equations and physics interpretation 
boundary/initial conditions.

3) Objectives, feasibility, and time-constraints. 

4) Numerical method and modeling assumptions.

5) Geometry and mesh generation. 

6) Computing i.e. running simulation. 

7) Visualization and post-processing.

8) Validation and verification, reference data. Reporting, 
analysis and discussion of the results. Are the results sane?  

CFD simulation and PDE solution includes at least 
the following aspects covered on the course

 



  

Background



  

Introduction
Prof. V.Vuorinen

2004: M.Sc. (Tech.) computational physics/HUT.

2010: D.Sc.(Tech.) computational fluid dynamics/AALTO.

2014: Assistant professor in CFD in energy/AALTO. 

2021: Research team ~ 8 PhD students, 6 Postdocs, 1 Senior researcher

2021: Supervised 9 PhD thesis. Co-supervised additionally 3 PhD thesis

2021: ~90 journal publications, focus on scale-resolving CFD.

3/2020: Research on COVID-19 
→ Early discovery of aerosol transmission and the “droplet paradigm”
→ 220+ media articles & SCICOM on #COVIDisAirborne  



  

Courtesy: E.Laurila
(submitted)

Courtesy: M.Korhonen

Application of CFD to airborne transmission investigations 

Simulation by:
M.Auvinen &A.Hellsten/FMI

Simulation: V.Vuorinen
Visualization: M.Gadalla



  

Partial differential equations



  

Convection and diffusion as transport 
mechanisms

In fluid dynamics, we are interested in understanding how different variables – 

e.g. velocity/concentration/temperature - change in space (x,y,z) and time (t). 

Unknown functions below could be typically velocity and concentration fields. 

• Transport mechanisms: convection (velocity) and diffusion (molecular)

c=c (x , y , z , t)

u⃗= u⃗ (x , y , z , t)



  

Ordinary differential equations (ODEs) describe 
commonly time dependency of physical system. 

No space coordinate dependency.

dy
d t

=−λ y (t)

y (t =0)= yo

ODE for y=y(t)=? (e.g. radioactivity decay/Newton’s cooling law)

Initial condition

y (t )= y o e−λ t
Analytical solution



  

First of all, to resolve space-dependent functions, we need 
enough many grid points i.e. high enough resolution.

σ
∆x



  

∂c
∂ t

+u⃗⋅∇ c=α ∇
2c

Transported function c=c(x,y,z,t)

For example:
- virus concentration
- molecular concentration
- velocity component

Diffusivity [m2/s]

Velocity [m/s]

Partial differential equations (PDEs) describe space-time dependency of 
a physical system. 

Convection-diffusion (CD) eqn is the key PDE of fluid dynamics. 
CD-eqn is a general conservation law (mass, momentum, energy,..)

Diffusion
term

Convection
term



  

Smoke cloud moving in air can be accurately modeled by solving 
Navier-Stokes equation and CD-eqn for smoke concentration

∂c
∂ t

+u⃗⋅∇ c=α ∇
2c

u⃗= u⃗ (x , y , z , t)

c=c (x , y , z , t)



  

For a PDE problem to be well posed, it is 
necessary to have boundary and initial conditions.

c (x , t=0)=co (x)

E.g. convection-diffusion equation (1d)

∂c
∂ t

+u
∂ c
∂ x

=α
∂2c

∂ x2

c (x=0)=c1  c (x=L)=c2

Initial condition

Boundary conditions. For example: fixed values, 



  

Convection equation (1d)
Analytical solution: shape maintained and function travels/shifts at velocity u 

CD2/FD (central difference, 2nd order, finite difference): numerical dispersion is additionally noted at later times
E.g. concentration cloud moves due to wind. 

∂c
∂ t

+u
∂ c
∂ x

=0



  

Convection-diffusion equation (1d)
Solutions travel at velocity u while amplitude decreases

∂c
∂ t

+u
∂ c
∂ x

=α
∂2c

∂ x2

c=e.g. temperature, 
   concentration

α=diffusivity [m2/s]



  

Diffusion equation i.e. heat equation (1d)
Solution amplitude decreases and the diffusion spreads the function 

E.g. heat conducts from more hot towards cooler parts

∂c
∂ t

=α
∂2 c

∂ x2
c=e.g. temperature, concentration
α=diffusivity [m2/s]



  

Wave equation (1d)
Waves start traveling in opposite directions with velocities ± u

E.g. sound waves in air

∂2c

∂ t 2 =u2 ∂2 c

∂ x2
c=wave amplitude
u=wave speed (e.g. speed of sound)



  

Example: solution of the convection equation by pen and 
paper

∂c
∂ t

+u
∂ c
∂ x

=0

A smoke cloud concentration c(x,t) is transported by wind along the 
x-direction. The initial condition c(x,t=0) = g(x) and the wind velocity u>0 and 
t=time. 

We observe that the solution is c=g(x-ut) because if we substitute this 
expression to the convection eqn above then it fulfills the equation. 

Proof: 

1) Define a new variable z=x-ut
2) By chain rule of derivation applied on c=g(x-ut): 

(i) c
t 
= c

z
z

t 
= -uc

z
  and 

(ii) c
x 
= c

z
z

x 
= c

z 

3) Thus: c
t 
+ uc

x 
= -uc

z 
+ uc

z 
= 0

Conclusion: the solution has the same shape as the initial condition and 
it is just “shifting” in positive x-direction at velocity u (as we saw earlier).



  

Numerical solution using finite difference 
method



  

Common space discretization methods needed to solve 
PDEs

Finite difference: 
Central scheme (CD2)

∂ c
∂ x

≈
c i+1−c i−1

2 Δ x

∂ c
∂ x

≈
∫Δ x

∂ c
∂ x

dx

Δ x
=

c i+1/2−ci−1/2

Δ x

∂ c
∂ x

=
c i−ci−1

Δ x

Finite volume

Finite difference: 
Upwind scheme (u > 0)

∂ c
∂ x

=
c i+1−c i

Δ x

Finite difference: 
Downwind scheme (u < 0)



  

Common time discretization methods needed to solve 
PDEs

Euler method (1st order) 

∂c
∂ t

≈
c i

n+1−ci
n

Δ t

∂c
∂ t

≈
3 c i

n+1−4 ci
n+c i

n−1

2Δ t

Backward difference (2nd order)



  

Finite difference solution of convection-diffusion equation 
(Explicit Euler method + central difference CD2)

∂c
∂ t

+u
∂ c
∂ x

=α
∂2c

∂ x2

c1 c2 c Nc i
Δ x

c i
n+1−c i

n

Δ t
+u

ci+1
n −c i−1

n

2Δ x
=α

c i+1
n −2 c i

n+c i−1
n

Δ x2

x=0 x=L

c i
n+1

=c i
n
−Δ t u

c i+1
n −c i−1

n

2Δ x
+αΔ t

ci+1
n −2c i

n+c i−1
n

Δ x2

→ Can be solved easily by computer (e.g. Week 1 Matlab class). 



  

Discretization formulae come from Taylor series

● A function can be expanded in Taylor series around point x

f (x+Δ x)= f (x)+
∂ f (x)
∂ x

Δ x+
1
2!

∂
2 f (x )

∂ x2 Δ x2
+

1
3 !

∂
3 f (x )

∂ x3 Δ x3
+...

● We would like to find a numerical, discrete approximation for f’(x) using the 
values f(x

i
)=f

i 
 , f(x

i
+Δx)=f

i+1 
and f(x

i
-Δx)=f

i-1
● We see directly that:

 

f (x−Δ x)=f (x )−
∂ f ( x)
∂ x

Δ x+
1
2!

∂
2 f (x )

∂ x2 Δ x 2
−

1
3 !

∂
3 f ( x)

∂ x3 Δ x3
+.. .

f (x+Δ x)−f (x−Δ x)=2
∂ f (x )

∂ x
Δ x+

2
3 !

∂
3 f (x )

∂ x3 Δ x3
+O (Δ x5

)

f ( x+Δ x )− f (x−Δ x )

2Δ x
+O(Δ x2

)≈
∂ f (x)
∂ x

,  where O(Δ x2
)  is the leading error term.  

● The CD2 scheme above is said to be “second order” because the leading order 
term in the error is a polynomial of degree 2 i.e. O(Δx2)

● Taking more points would allow to construct more accurate higher degree 
discretization schemes which would pose less numerical dispersion/diffusion.  
 

● For example, where does the central difference formula (CD2) come from?

∂ f
∂ x

≈
f i+1− f i−1

2Δ x



  

Differential operators



  

Gradient and divergence

∇⋅u=
∂ u1

∂ x
+

∂ u2

∂ y
+

∂ u3

∂ z

∇= i⃗ ∂
∂ x

+ j⃗ ∂
∂ y

+ k⃗ ∂
∂ z

Gradient is a vector operator:

∇ϕ= i⃗
∂ ϕ

∂ x
+ j⃗

∂ϕ

∂ y
+ k⃗

∂ϕ

∂ z

Gradient of a scalar function is a vector:

Divergence of a vector is the scalar product of gradient with vector which is 
a scalar:

∇⋅∇=Δ= ∂2

∂ x2 +
∂2

∂ y2 +
∂2

∂ z2

Divergence of a gradient is the scalar operator i.e. the Laplacian operator:



  

In CD-equation, convection and diffusion terms 
contain divergence

∇⋅(uϕ )=ϕ ∇⋅u+u⋅∇ ϕ

Convection term:

Diffusion term (const. diffusivity):

∇⋅(ν∇ ϕ)=ν∇⋅∇ ϕ=ν
∂2ϕ

∂ x2 +ν
∂2 ϕ

∂ y 2 +ν
∂2 ϕ

∂ z2

Note: 
1st derivatives 

Note: 
2nd derivatives ∇⋅(ν∇ ϕ)=ν∇⋅∇ ϕ=ν

∂2 ϕ

∂ x2 +ν
∂2 ϕ

∂ y2 +ν
∂2ϕ

∂ z2



  

Tensors

uu=[u iu j ]3×3

uuUsed short-hand notation for multiplying vectors

uu=u uT

If we define u as 3 by 1 vector then how can we multiply two vectors?

The used short-hand is here understood as matrix product 

In the present notation  uu defines a 3 by 3 matrix also called a “tensor”

Row index Column index



  

Divergence of vector and tensor

∇⋅u=
∂ u1

∂ x
+

∂ u2

∂ y
+

∂ u3

∂ z

Divergence of a vector is a scalar:

∇⋅uu=C⃗

Divergence of a tensor is a vector:

Thus: we can think that taking divergence reduces the dimensionality of the object. 
- divergence of 3 by 3 tensor gives a 3 by 1 vector
- divergence of 3 by 1 vector gives a scalar (think: “1 by 1” matrix)



  

Einstein summation convention and index notation

Einstein summation convention:
if index appears twice, sum over
the index

∇⋅u=
∂ ui

∂ x i

=Σi=1
3 ∂ ui

∂ x i

Divergence of vector:

∇⋅uu=
∂ ui u j

∂ x j

=u j

∂ ui

∂ x j

+ui

∂u j

∂ x j

Divergence of tensor:
u j

∂ ui

∂ x j

=u⋅∇ u i ui

∂u j

∂ x j

=0

In incompressible flows the latter term is zero:

Divergence of gradient of scalar:

ν∇⋅∇ u i=ν
∂2 ui

∂ x j
2
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