

EEN-E2001 Computational Fluid Dynamics Lecture 1: Partial Differential Equations and Finite Difference Method

Prof. Ville Vuorinen

January 16th 2023

Aalto University, School of Engineering

CFD simulation and PDE solution includes at least the following aspects covered on the course

- 1) **Physics** identification. System length and timescales.
- 2) **Mathematical equations and physics interpretation** boundary/initial conditions.
- 3) **Objectives, feasibility, and time-constraints**.
- 4) **Numerical method and modeling assumptions**.
- 5) **Geometry and mesh generation**.
- 6) **Computing** i.e. running simulation.
- 7) **Visualization and post-processing**.

8) **Validation and verification, reference data**. Reporting, analysis and discussion of the results. Are the results sane?

Background

Introduction Prof. V.Vuorinen

2004: M.Sc. (Tech.) computational physics/HUT.

2010: D.Sc.(Tech.) computational fluid dynamics/AALTO.

2014: Assistant professor in CFD in energy/AALTO.

2021: Research team ~ 8 PhD students, 6 Postdocs, 1 Senior researcher

2021: Supervised 9 PhD thesis. Co-supervised additionally 3 PhD thesis

2021: ~90 journal publications, focus on scale-resolving CFD.

3/2020: Research on COVID-19

 \rightarrow Early discovery of aerosol transmission and the "droplet paradigm"

 \rightarrow 220+ media articles & SCICOM on #COVIDisAirborne

Application of CFD to airborne transmission investigations

Simulation: V.Vuorinen Visualization: M.Gadalla

Partial differential equations

Convection and diffusion as transport mechanisms

In fluid dynamics, we are interested in understanding how different variables – e.g. velocity/concentration/temperature - change in space (x,y,z) and time (t). Unknown functions below could be typically velocity and concentration fields. • Transport mechanisms: convection (velocity) and diffusion (molecular)

Ordinary differential equations (ODEs) describe commonly time dependency of physical system. No space coordinate dependency.

ODE for $y=y(t)=?$ (e.g. radioactivity decay/Newton's cooling law)

$$
\left|\frac{dy}{dt}\right| = -\lambda y(t)
$$

Initial condition

$$
y(t=0)=y_o
$$

Analytical solution

$$
y(t) = y_o e^{-\lambda t}
$$

First of all, to resolve space-dependent functions, we need enough many grid points i.e. high enough resolution.

Partial differential equations (PDEs) describe space-time dependency of a physical system.

Convection-diffusion (CD) eqn is the key PDE of fluid dynamics.

CD-eqn is a general conservation law (mass, momentum, energy,..)

Smoke cloud moving in air can be accurately modeled by solving Navier-Stokes equation and CD-eqn for smoke concentration

∂*c* ∂*t* $+i\vec{u}\cdot\nabla c = \alpha \nabla^2 c$ $\vec{u} = \vec{u}(x, y, z, t)$ $c = c(x, y, z, t)$

For a PDE problem to be well posed, it is necessary to have boundary and initial conditions.

E.g. convection-diffusion equation (1d)

$$
\frac{\partial c}{\partial t} + u \frac{\partial c}{\partial x} = \alpha \frac{\partial^2 c}{\partial x^2}
$$

Initial condition

$$
c(x, t=0) = c_o(x)
$$

Boundary conditions. **For example:** fixed values,

$$
c(x=0)=c_1
$$
 $c(x=L)=c_2$

Convection equation (1d)

Analytical solution: shape maintained and function travels/shifts at velocity u

CD2/FD (central difference, 2nd order, finite difference): **numerical dispersion** is additionally noted at later times E.g. concentration cloud moves due to wind.

$$
\frac{\partial c}{\partial t} + u \frac{\partial c}{\partial x} = 0
$$

Convection-diffusion equation (1d)

Solutions travel at velocity u while amplitude decreases

$$
\frac{\partial c}{\partial t} + u \frac{\partial c}{\partial x} = \alpha \frac{\partial^2 c}{\partial x^2}
$$

c=e.g. temperature, concentration α =diffusivity [m²/s]

Diffusion equation i.e. heat equation (1d)

Solution amplitude decreases and the diffusion spreads the function E.g. heat conducts from more hot towards cooler parts

c=e.g. temperature, concentration α =diffusivity [m²/s]

Wave equation (1d)

Waves start traveling in opposite directions with velocities $\pm u$ E.g. sound waves in air

c=wave amplitude u=wave speed (e.g. speed of sound)

Example: solution of the convection equation by pen and paper

A smoke cloud concentration c(x,t) is transported by wind along the x-direction. The initial condition c(x,t=0) = g(x) and the wind velocity u>0 and t=time.

$$
\left[\frac{\partial c}{\partial t} + u \frac{\partial c}{\partial x} = 0\right]
$$

We observe that the solution is c=g(x-ut) because if we substitute this expression to the convection eqn above then it fulfills the equation.

Proof:

1) Define a new variable $z=x$ -ut

2) By chain rule of derivation applied on $c = g(x-ut)$:

(i) $c_t = c_z z_t = -uc_z$ and (ii) $c_x = c_z z_x = c_z$

3) **Thus:** $c_t + uc_x = -uc_z + uc_z = 0$

Conclusion: the solution has the same shape as the initial condition and it is just "shifting" in positive x-direction at velocity u (as we saw earlier).

Numerical solution using finite difference method

Common space discretization methods needed to solve PDEs

Finite difference: Central scheme (CD2)

$$
\frac{\partial c}{\partial x} \approx \frac{c_{i+1} - c_{i-1}}{2 \Delta x}
$$

Finite volume

$$
\frac{\partial c}{\partial x} \approx \frac{\int_{\Delta x} \frac{\partial c}{\partial x} dx}{\Delta x} = \frac{c_{i+1/2} - c_{i-1/2}}{\Delta x}
$$

Finite difference: Upwind scheme $(u > 0)$

$$
\frac{\partial c}{\partial x} = \frac{c_i - c_{i-1}}{\Delta x}
$$

Finite difference: Downwind scheme $(u < 0)$

$$
\frac{\partial c}{\partial x} = \frac{c_{i+1} - c_i}{\Delta x}
$$

Common time discretization methods needed to solve PDEs

Euler method $(1st order)$

Backward difference (2nd order)

$$
\frac{\partial c}{\partial t} \approx \frac{3c_i^{n+1} - 4c_i^n + c_i^{n-1}}{2\Delta t}
$$

Finite difference solution of convection-diffusion equation (Explicit Euler method + central difference CD2)

 \rightarrow Can be solved easily by computer (e.g. Week 1 Matlab class).

Discretization formulae come from Taylor series

• For example, where does the central difference formula (CD2) come from?

 \bullet A function can be expanded in Taylor series around point x

$$
f(x+\Delta x)=f(x)+\frac{\partial f(x)}{\partial x}\Delta x+\frac{1}{2!}\frac{\partial^2 f(x)}{\partial x^2}\Delta x^2+\frac{1}{3!}\frac{\partial^3 f(x)}{\partial x^3}\Delta x^3+...
$$

$$
f(x-\Delta x)=f(x)-\frac{\partial f(x)}{\partial x}\Delta x+\frac{1}{2!}\frac{\partial^2 f(x)}{\partial x^2}\Delta x^2-\frac{1}{3!}\frac{\partial^3 f(x)}{\partial x^3}\Delta x^3+...
$$

- We would like to find a numerical, discrete approximation for $f'(x)$ using the values $f(x_i)=f_i$, $f(x_i+\Delta x)=f_{i+1}$ and $f(x_i-\Delta x)=f_{i-1}$
- We see directly that:

$$
f(x+\Delta x) - f(x-\Delta x) = 2\frac{\partial f(x)}{\partial x} \Delta x + \frac{2}{3!} \frac{\partial^3 f(x)}{\partial x^3} \Delta x^3 + O(\Delta x^5)
$$

$$
\frac{f(x+\Delta x) - f(x-\Delta x)}{2\Delta x} + O(\Delta x^2) \approx \frac{\partial f(x)}{\partial x}, \text{ where } O(\Delta x^2) \text{ is the leading error term.}
$$

- The CD2 scheme above is said to be "second order" because the leading order term in the error is a polynomial of degree 2 i.e. $O(\Delta x^2)$
- Taking more points would allow to construct more accurate higher degree discretization schemes which would pose less numerical dispersion/diffusion.

Differential operators

Gradient and divergence

Gradient is a vector operator:

$$
\nabla = \vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}
$$

Gradient of a scalar function is a vector:

$$
\nabla \phi = \vec{i} \frac{\partial \phi}{\partial x} + \vec{j} \frac{\partial \phi}{\partial y} + \vec{k} \frac{\partial \phi}{\partial z}
$$

Divergence of a vector is the scalar product of gradient with vector which is a scalar:

$$
\nabla \cdot \mathbf{u} = \frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y} + \frac{\partial u_3}{\partial z}
$$

Divergence of a gradient is the scalar operator i.e. the Laplacian operator:

$$
\nabla \cdot \nabla = \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}
$$

In CD-equation, convection and diffusion terms contain divergence

Convection term:

 $\nabla \cdot (\mathbf{u} \phi) = \phi \nabla \cdot \mathbf{u} + \mathbf{u} \cdot \nabla \phi$

Diffusion term (const. diffusivity):

$$
\nabla \cdot \left(\nu \, \nabla \, \varphi \right) = \nu \, \nabla \cdot \nabla \, \varphi = \nu \, \frac{\partial^2 \, \varphi}{\partial \, x^2} + \nu \, \frac{\partial^2 \, \varphi}{\partial \, y^2} + \nu \, \frac{\partial^2 \, \varphi}{\partial \, z^2} \qquad \qquad \text{Note:} \qquad \qquad \text{Note:}
$$

Note: $2nd$ derivatives

Tensors

Used short-hand notation for multiplying vectors *uu*

If we define u as 3 by 1 vector then how can we multiply two vectors?

The used short-hand is here understood as matrix product $\int u\,u\!=\!u\,u^T$

In the present notation *uu* defines a 3 by 3 matrix also called a "tensor"

Divergence of vector and tensor

Divergence of a vector is a scalar:

Divergence of a tensor is a vector:

Thus: we can think that taking divergence reduces the dimensionality of the object.

- divergence of 3 by 3 tensor gives a 3 by 1 vector - divergence of 3 by 1 vector gives a scalar (think: "1 by 1" matrix)

Einstein summation convention and index notation

Einstein summation convention: if index appears twice, sum over the index

Divergence of vector:

$$
\nabla \cdot \mathbf{u} = \frac{\partial u_i}{\partial x_i} = \sum_{i=1}^3 \frac{\partial u_i}{\partial x_i}
$$

Divergence of tensor:

$$
\nabla \cdot \mathbf{u} \mathbf{u} = \frac{\partial u_i u_j}{\partial x_j} = u_j \frac{\partial u_i}{\partial x_j} + u_i \frac{\partial u_j}{\partial x_j}
$$

Divergence of gradient of scalar:

In incompressible flows the latter term is zero:

