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After the lecture the student: 

- Can explain connection between Gauss’ theorem and the 
finite volume method (fvm)

- Can write down & derive the fvm discretized 1d convection-
diffusion problem (relevance: HW2) 

Intended learning objectives of the full lecture
 



  

In fact, Gauss (left) and Newton (right) developed much of the 
mathematics and physics tools & thinking that we use 

nowadays in our CFD simulations

https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/File:Carl_Friedrich_Gauss_1840_by_Jensen.jpg https://en.wikipedia.org/wiki/File:Portrait_of_Sir_Isaac_Newton,_1689.jpg

https://en.wikipedia.org/wiki/Isaac_Newton

https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/File:Carl_Friedrich_Gauss_1840_by_Jensen.jpg
https://en.wikipedia.org/wiki/File:Portrait_of_Sir_Isaac_Newton,_1689.jpg
https://en.wikipedia.org/wiki/Isaac_Newton


  

1) Physics identification.  

2) Mathematical equations and physics interpretation. 
Boundary/initial conditions.

3) Objectives, feasibility, and time-constraints. 

4) Numerical method and modeling assumptions.

5) Geometry and mesh generation. 

6) Computing i.e. running simulation. 

7) Visualization and post-processing.

8) Validation and verification, reference data. Reporting, 
analysis and discussion of the results. Are the results sane?  

CFD simulation and PDE solution includes at least 
the following aspects covered on the course

 



  

Visual example: Aerodynamics CFD simulation 
using the finite volume method (OpenFOAM)

 The Motorbike tutorial and steady state velocity field

https://www.youtube.com/watch?v=1C4Av_yCfpw&list=RDCMUCDuQsPzfqxcYKVp_uuKCzqw&start_radio=1&rv=1C4Av_yCfpw&t=6

https://www.youtube.com/watch?v=1C4Av_yCfpw&list=RDCMUCDuQsPzfqxcYKVp_uuKCzqw&start_radio=1&rv=1C4Av_yCfpw&t=6


  

Visual research examples: recent high-performance computing 
applications using finite volume method (OpenFOAM) in my team

https://www.sciencedirect.com/science/article/abs/pii/S0029801821017194?via%3Dihub
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2 u⃗

Navier-Stokes (Newton’s 2nd law)

Convection-Diffusion eqn

Velocity 
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Ship hydrodynamics simulation by: P.Kanninen & P.Peltonen

Indoor airflow simulation by: V.Vuorinen. Visualization: M.Gadalla
Indoor airflow simulation by: M.Korhonen

Ship hull

https://www.sciencedirect.com/science/article/abs/pii/S0029801821017194?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0029801821017194?via%3Dihub


  

“Computational cost” depends on numerous aspects: 
Type of software, computing infrastructure, how long can you wait, method, 

resolution, how long we need to simulate physical time, steady vs transient, physics 
(e.g. refinement need at boundary layers/wakes), what is the intention of the 

simulation (e.g. visualization of known physics, quick design insight, exact matching 
of an experiment with publication quality) etc

Case Resolution Computational
cost

Method Comment

Motorbike Very coarse 
~0.1M cells

~1 min 
(Laptop CPU)

Steady state 
RANS - method

A basic tutorial. 
Intention: demo

Airflow in a 
room

Medium
~30M cells

~2 days
(GPU)

Transient LES 
method

Published in a 
journal. 

Ship hydro Medium
~60M cells

~10 days
(Supercomputer)

Transient LES 
method

Published in a 
journal. 



  

1

μ g /mm

t=0 s

t=1 s

t=2 s

1d convection-diffusion of a Gaussian
Example: medicine injection into a blood vessel (very fast and small quantity)

Medicine 
concentration

x , cm

0

Distance from 
injection point

5 10

https://commons.wikimedia.org/wiki/File:Vasodilation.jpg
https://commons.wikimedia.org/wiki/File:201306_needle_syringe.png 3D smoke cloud moving with air

https://commons.wikimedia.org/wiki/File:Vasodilation.jpg
https://commons.wikimedia.org/wiki/File:201306_needle_syringe.png


  

1d convection-diffusion equation

x

c
u=const

Finite-difference method (Lecture 1)

1) Physics 
identification.   

2) Mathematical 
equations and 
physics 
interpretation.   

3) Objectives, 
feasibility, and 
time-constraints.  

4) Numerical 
method and 
modeling 
assumptions. 

Find the concentration 
field after 1, 5, and 10s

Finite-volume method (Lecture 2)

∂c
∂ t

+∇⋅u c=∇⋅(α ∇ c )



  

Finite-difference method (Lecture 1)

c i
n+1
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+u
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n

2Δ x
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ci +1
n

−2ci
n
+c i−1

n

Δ x2

c i
n+1

=c i
n
−uΔ t
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n
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n
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n
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n
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n
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x

c
u=const

x i−1 x i x i+1

c i
n - time coordinate

- space coordinate

Finite-difference method: discretize space with points and solve for 
values of field in these points

∂ c
∂ t

+∇⋅uc=∇⋅(α∇ c)



  

Gauss’ (Ostrogradsky’s) theorem

∫V
∇⋅a dV =∫S

a⋅n dS

General formulation

Meaning: change of transported scalar quantity in any volume equals sum of 
fluxes through boundaries
Thus, we can transform any volume integral of a divergence of a vector field 
to a surface integral

∫V
∇⋅(uϕ)dV =∫A

(uϕ)⋅ndA

a
V
S

- vector field
- control volume
- control surface

Using general flux 

u
ϕ

- velocity field
- scalar field (density, concentration,...)

uϕ

V

S
n

n
n

n

https://commons.wikimedia.org/wiki/File:Divergence_theorem.svg



  

Divide domain into control volumes (cells)

∂ c
∂ t

=−∇⋅u c+∇⋅(α∇ c)

Cave

  

Apply volume integral:

 

Rate of change 
of c in a cell

Change due to 
convection

Change due to 
diffusion

1
V
∫V

∂ c
∂ t

dV=−
1
V
∫V

∇⋅u cdV +
1
V
∫V

∇⋅(α∇ c )dV

Dave

Cell

We are now solving 
for an average 

concentration in 
each cell

∂c
∂ t |cell

Key step!



  

1d convection of a Gaussian
Goal: calculate field c after Δt 

Δ x0 L
x

c

N1 N2P

f 1 f 2

n⃗f 2

Use cell P
with volume    

u=const>0 , t 1=t 0+Δ tt 1=t 0+Δ t , 5 cells
V P

● Initial condition: average concentration values for each cell is given (based on 
Gaussian)

● Boundary condition: periodic (last and first cells are connected)
● Grid: uniform and has 5 cells
● Velocity: constant positive
● How can we calculate change of the concentration field after some small time 

step Δt?

Δ t

t=0 t=t end

t

1. Equations are integrated over some time step.
2. New values of fields (u, p, T…) are obtained 
and then used as initial values for next iteration. 

Time-marching



  

1d convection of a Gaussian
Goal: calculate field c after Δt 

Δ x0 L
x

c

N1 N2P

f 1 f 2

n⃗f 2

Gauss’ theorem

Use cell P
with volume    

u=const>0 , t 1=t 0+Δ tt 1=t 0+Δ t , 5 cells

.=u
c f 2

−cf 1

Δ x
.=

uf 2
c f 2

−uf 1
cf 1

Δ x
.= 1

V P
∑f

(u⃗ f c f )⋅n⃗f A f.= 1
V P

∫A P

(u⃗ c) n⃗ dAP
1

V P
∫V P

∇⋅( u⃗ c)dV

Finite number 
of faces

&
Use average 

fluxes

1d uniform 
mesh

Constant 
velocity

Cave

V P

.=α
(∂c/ ∂ x)f 2−(∂c /∂ x) f1

Δ x
.= α

V P
∑f

(∇ c f )⋅n⃗f Af.= α
V P

∫A P

(∇ c) n⃗ dA P
1

V P
∫V P

α∇⋅(∇ c)dV

Dave

Convection

Diffusion

From where does the error come from!?

1
V
∫V

∂c
∂ t

dV=−
1
V
∫V

∇⋅u c dV+
1
V
∫V

∇⋅(α∇ c)dV

  

C
ave

C
ave



  

1d convection of a Gaussian
Goal: calculate field c after Δt 

Δ x0 L
x

c

N1 N2P

f 1 f 2

n⃗f 2

u=const>0 , t 1=t 0+Δ tt 1=t 0+Δ t , 5 cells

Cave

   

Rate of change 
of c in a cell

Change due to 
convection

Change due to 
diffusion

∂ c
∂ t |cell P

=−u
cf 2

−cf 1

Δ x
+α

(∂c / ∂ x )f 2
−(∂ c /∂ x )f 1

Δ x

Dave

∂ c
∂ t

=−∇⋅u c+∇⋅(α∇ c)

We started with:

After volume averaging and 
Gauss theorem

How do we calculate face values of         and                 ?∂c /∂ xc



  

1d convection of a Gaussian
Goal: calculate field c after Δt 

Δ x0 L
x

c

N1 N2P

f 1 f 2

n⃗f 2

u=const>0 , t 1=t 0+Δ tt 1=t 0+Δ t , 5 cells

c f 1LIN=
cP+cN 1

2
c f 1UW={cP if u<0

cN1
if u>0

UpwindLinear

Note: face interpolation is one of the most essential parts to pay attention on in CFD!
We will study the effect of different interpolation tecniques in Assignment 1.

c f 1BL=(1−γ)c f 1UW +γ cf 1 LIN

Blended

Flux limiting

c f 1
=c f 1UW −ϕ(r N 1

) (c f 1UW−c f 1LIN)

r P=
cP−cN1

cN 2
−cP

ϕ(rP) - flux limiter function

- ratio of successive 
gradients

(
∂ c
∂ x

)
f 1

=
1

Δ x
∫xN

1

xP

c ' (x )dx≈
c P−cN 1

Δ x

How do we calculate face values of        and                 ?c ∂c /∂ x



  

1d convection of a Gaussian
Goal: calculate field c after Δt 
u=const>0 , t 1=t 0+Δ tt 1=t 0+Δ t , 5 cells

Cave

 

Rate of change 
of c in a cell

Change due to 
convection

Change due to 
diffusion

∂c
∂ t |cell P

=−u
c f 2

−c f 1

Δ x
+α

(∂ c /∂ x)f 2
−(∂c /∂ x)f 1

Δ x

Dave

∂ c
∂ t

=−∇⋅u c+∇⋅(α∇ c)

We started with:

Volume averaging + Gauss’ theorem

Are we done?
Or is there something missing still?

cP
n+1

−cP
n

Δ t
=−u

cN2
−cN1

2Δ x
+α

cN 2
−2cP+ cN1

Δ x2

Δ x0 L
x

c

N1 N2P

f 1 f 2

n⃗f 2

Euler + linear

  



  

1d convection of a Gaussian
Goal: calculate field c after Δt 
u=const>0 , t 1=t 0+Δ tt 1=t 0+Δ t , 5 cells

cP
n+1

−c P
n

Δ t
=−u

c N 2

n
−cN 1

n

2 Δ x
+α

cN 2

n
−2c P

n
+cN 1

n

Δ x 2

Δ x0 L
x

c

N1 N2P

f 1 f 2

n⃗f 2

Use data from the previous time step (n)
Explicit time stepping:

We know everything in the 
equation and can solve for        cP

n+1

However, this method can be quite unstable and thus requires 
small time steps

Note: this is the formula we obtained for finite-difference:

c i
n+1

−c i
n

Δ t
=−u

c i+1−c i−1

2Δ x
+α

c i+1
n

−2c i
n
+c i−1

n

Δ x2

For 1d uniform grid case 
FVM and FDM give the 

same result.



  

1d convection of a Gaussian
Goal: calculate field c after Δt 
u=const>0 , t 1=t 0+Δ tt 1=t 0+Δ t , 5 cells

cP
n+1

−c P
n

Δ t
=−u

c N 2

n+1
−cN 1

n+1

2Δ x
+α

c N2

n+1
−2c P

n+1
+cN 1

n+1

Δ x2

Δ x0 L
x

c

N1 N2P

f 1 f 2

n⃗f 2

Combining unknowns (cell-averaged values          )cX
n+1

This method is more stable, but requires iterative linear solvers. It 
is used by OpenFOAM

aP cP
n+1

+∑
N i

a N i
cN i

n+1
=bP

(
a 11 a12 a13 a 14 a15
a 21 a22 a23 a 24 a25
a 31 a32 a33 a 34 a35
a 41 a42 a43 a 44 a45
a 51 a52 a53 a 54 a55

)⋅(
c 1

n+ 1

c 2
n+ 1

c 3
n+ 1

c 4
n+ 1

c 5
n+ 1
)=(

b1
b2
b3
b4
b5
)Construct system for 

all 5 cells

~ A ⃗cn+1
= b⃗

Use data from the next time step (n+1)
Implicit time stepping:



  

Finite volume method in a nutshell

The core problem in solving convection-diffusion type equations (PDE’s):
In CFD, we would like to find a ∆φ=∆t(-C+D) to update solution as φ

n+1
 = φ

n
 + ∆φ. 

→ Need to numerically calculate divergence terms i.e. convection C=C(x,y,z,t) & 
diffusion D=D(x,y,z,t) (t=n∆t).

∫V
∇⋅(uϕ)dV=∫A

(uϕ)⋅n dA

dA = differential area element on the outer surface A of volume V 
n = the surface outer normal vector

Gauss’ theorem: enables converting volume integrals into surface integrals (B.Sc. math):

C=∇⋅(uϕ)

D=α ∇⋅∇ ϕ

Cave=
1
V ∫V

∇⋅(uϕ)dV=
1
V ∫A

(uϕ)⋅n dA≈
1
V

Σfaces(u f ϕf )⋅nf dA f

Gauss’ theorem + volume averaging: divergence terms C and D can be converted into
surface integrals which can be numerically computed via summations. 

Dave=
1
V ∫V

α ∇⋅∇ ϕdV =
1
V ∫A

∇ ϕ⋅n dA≈
1
V

Σfaces ∇ ϕf⋅n f dA f



  

Numerical stability: Courant number (Co) and Courant-
Friedrichs-Lewy (CFL) number should be below one. 

Co=
Δ t u
Δ x

<1

CFL=
Δ t α

Δ x2
<1

CFL is relevant to the stability of the diffusion term (e.g. concentration is not
allowed to diffuse over distances larger than grid spacing during timestep) 

Co is relevant to the stability of the convection term (e.g. velocity is not
allowed to transport over distances larger than grid spacing during timestep) 



  

Recap discussions: Gauss’ theorem, conservation of mass and a room with 
cross-draught. Flow enters 1m/s from the left windows and exits from right. 

Window area = constant. 

x

y

z

https://www.youtube.com/watch?v=Pf7hgOkjd_w

Indoor airflow simulation by: M.Korhonen

https://www.youtube.com/watch?v=Pf7hgOkjd_w


  

Basic fluid dynamics (M.Sc.): Velocity field of incompressible fluids, 
such as low speed air and water, satisfies the mass conservation equation: 

∇⋅u⃗=0

x

y

z

Test your learning by writing down:

Q0: Gauss’ theorem for div(u)=0 for V
room

Q1: What is outer normal n at the 4 walls?
Q2: What is u on the 4 walls?
Q3: What are n & u at the windows?  
Q4: What can we say about U

w
A

w 
? 

(w=window, U
w 

= mean velocity at window, A
w
=area)
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