

EEN-E2001 Computational Fluid Dynamics Lecture 2: Gauss' Theorem and Finite Volume Method

Prof. Ville Vuorinen, M.Eng. Ilya Morev

January 23rd 2023 Aalto University, School of Engineering

Intended learning objectives of the full lecture

After the lecture the student:

- Can explain connection between Gauss' theorem and the finite volume method (fvm)
- Can write down & derive the fvm discretized 1d convectiondiffusion problem (relevance: HW2)

In fact, Gauss (left) and Newton (right) developed much of the mathematics and physics tools & thinking that we use nowadays in our CFD simulations

https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss https://en.wikipedia.org/wiki/File:Carl_Friedrich_Gauss_1840_by_Jensen.jpg https://en.wikipedia.org/wiki/File:Portrait_of_Sir_Isaac_Newton,_1689.jpg

https://en.wikipedia.org/wiki/Isaac_Newton

CFD simulation and PDE solution includes at least the following aspects covered on the course

- 1) **Physics** identification.
- 2) **Mathematical equations and physics interpretation.** Boundary/initial conditions.
- 3) **Objectives, feasibility, and time-constraints**.
- 4) **Numerical method and modeling assumptions**.
- 5) **Geometry and mesh generation**.
- 6) **Computing** i.e. running simulation.
- 7) **Visualization and post-processing**.

8) **Validation and verification, reference data**. Reporting, analysis and discussion of the results. Are the results sane?

Visual example: Aerodynamics CFD simulation using the finite volume method (OpenFOAM)

The Motorbike tutorial and steady state velocity field

Visual research examples: recent high-performance computing applications using finite volume method (OpenFOAM) in my team

<https://www.sciencedirect.com/science/article/abs/pii/S0029801821017194?via%3Dihub>

[Ship hydrodynamics simulation by: P.Kanninen & P.Peltonen](https://www.sciencedirect.com/science/article/abs/pii/S0029801821017194?via%3Dihub)

Indoor airflow simulation by: V.Vuorinen. Visualization: M.Gadalla Indoor airflow simulation by: M.Korhonen

"Computational cost" depends on numerous aspects:

Type of software, computing infrastructure, how long can you wait, method, resolution, how long we need to simulate physical time, steady vs transient, physics (e.g. refinement need at boundary layers/wakes), what is the intention of the simulation (e.g. visualization of known physics, quick design insight, exact matching of an experiment with publication quality) etc

1d convection-diffusion of a Gaussian

Example: medicine injection into a blood vessel (very fast and small quantity)

1d convection-diffusion equation

1) **Physics** identification.

2) **Mathematical equations and physics interpretation.**

$$
\frac{\partial c}{\partial t} + \nabla \cdot u c = \nabla \cdot (\alpha \nabla c)
$$

Find the concentration field after 1, 5, and 10s

4) **Numerical method and modeling assumptions**.

3) **Objectives,**

feasibility, and

time-constraints.

Finite-**difference** method (Lecture 1)

Finite-**volume** method (Lecture 2)

Finite-**difference** method (Lecture 1)

Finite-difference method: discretize space with points and solve for values of field in these points

Gauss' (Ostrogradsky's) theorem

Meaning: change of transported scalar quantity in any volume equals sum of fluxes through boundaries **Thus,** we can transform any volume integral of a divergence of a vector field to a surface integral

Divide domain into control volumes (cells)

1d convection of a Gaussian Goal: calculate field *c* after Δt $u = const > 0$, $t_1 = t_0 + \Delta t$, 5 cells

- Initial condition: average concentration values for each cell is given (based on Gaussian)
- Boundary condition: periodic (last and first cells are connected)
- Grid: uniform and has 5 cells
- **Velocity: constant positive**
- How can we calculate change of the concentration field after some small time step Δt?

Time-marching

1. Equations are integrated over some time step. 2. New values of fields (u, p, T…) are obtained and then used as initial values for next iteration.

1d convection of a Gaussian Goal: calculate field *c* after Δt $u = const > 0$, $t_1 = t_0 + \Delta t$, 5 cells

Use data from the previous time step (n) **Explicit time stepping:**

1d convection of a Gaussian Goal: calculate field *c* after Δt $u = const > 0$, $t_1 = t_0 + \Delta t$, 5 cells

n+1

Use data from the next time step (n+1) **Implicit time stepping:**

Combining unknowns (cell-averaged values

$$
a_{P}c_{P}^{n+1} + \sum_{N_{i}} a_{N_{i}}c_{N_{i}}^{n+1} = b_{P}
$$
\n
$$
\sum_{N_{i}} \text{Construct system for} \quad\n\begin{pmatrix}\na_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}\n\end{pmatrix}\n\begin{pmatrix}\nc_{1}^{n+1} \\
c_{2}^{n+1} \\
c_{3}^{n+1} \\
c_{4}^{n+1} \\
c_{5}^{n+1}\n\end{pmatrix}\n=\n\begin{pmatrix}\nb_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5}\n\end{pmatrix}
$$
\n
$$
\sum_{N_{i}} \frac{a_{N_{i}}}{N_{i}} = \frac{1}{b}
$$

This method is more stable, but requires iterative linear solvers. It is used by OpenFOAM

Finite volume method in a nutshell

The core problem in solving convection-diffusion type equations (PDE's): In CFD, we would like to find a $\Delta \varphi = \Delta t (-C+D)$ to update solution as $\varphi_{n+1} = \varphi_n + \Delta \varphi$. \rightarrow Need to numerically calculate divergence terms i.e. convection C=C(x,y,z,t) & diffusion D= $D(x,y,z,t)$ (t= $n\Delta t$).

$$
C = \nabla \cdot (\boldsymbol{u} \phi)
$$

 $D = \alpha \nabla \cdot \nabla \phi$

Gauss' theorem: enables converting volume integrals into surface integrals (B.Sc. math)

 $\int_{V} \nabla \cdot (\mathbf{u} \phi) dV = \int_{A} (\mathbf{u} \phi) \cdot \mathbf{n} dA$

dA = differential area element on the outer surface *A* of volume *V* $n =$ the surface outer normal vector

V

Gauss' theorem + volume averaging: divergence terms C and D can be converted into surface integrals which can be numerically computed via summations.

cell centroids P and N

$$
C_{ave} = \frac{1}{V} \int_{V} \nabla \cdot (\mathbf{u} \phi) dV = \frac{1}{V} \int_{A} (\mathbf{u} \phi) \cdot \mathbf{n} dA \approx \frac{1}{V} \sum_{faces} (\mathbf{u}_{f} \phi_{f}) \cdot \mathbf{n}_{f} dA_{f}
$$

\n
$$
D_{ave} = \frac{1}{V} \int_{V} \alpha \nabla \cdot \nabla \phi dV = \frac{1}{V} \int_{A} \nabla \phi \cdot \mathbf{n} dA \approx \frac{1}{V} \sum_{faces} (\mathbf{u}_{f} \phi_{f}) \cdot \mathbf{n}_{f} dA_{f}
$$

\n
$$
D_{ave} = \frac{1}{V} \int_{V} \alpha \nabla \cdot \nabla \phi dV = \frac{1}{V} \int_{A} \nabla \phi \cdot \mathbf{n} dA \approx \frac{1}{V} \sum_{faces} \nabla \phi_{f} \cdot \mathbf{n}_{f} dA_{f}
$$

Numerical stability: Courant number (Co) and Courant-Friedrichs-Lewy (CFL) number should be below one.

Co is relevant to the stability of the convection term (e.g. velocity is not allowed to transport over distances larger than grid spacing during timestep)

CFL is relevant to the stability of the diffusion term (e.g. concentration is not allowed to diffuse over distances larger than grid spacing during timestep)

$$
CFL = \frac{\Delta t \alpha}{\Delta x^2} < 1
$$

Recap discussions: Gauss' theorem, conservation of mass and a room with cross-draught. Flow enters 1m/s from the left windows and exits from right. Window area = constant.

x $V¹$ z https://www.youtube.com/watch?v=Pf7hgOkjd_w

Basic fluid dynamics (M.Sc.): Velocity field of incompressible fluids, such as low speed air and water, satisfies the mass conservation equation:

$$
\nabla \cdot \vec{u} = 0
$$

Test your learning by writing down:

Q0: Gauss' theorem for div(\mathbf{u})=0 for \mathbf{V}_{room} **Q1:** What is outer normal **n** at the 4 walls? **Q2:** What is **u** on the 4 walls? **Q3:** What are **n** & **u** at the windows? **Q4:** What can we say about $U_w A_w$? (w=window, U_w = mean velocity at window, A_w =area)

x

z

y