

January 30th 2023
Aalto University, School of Engineering

EEN-E2001 Computational Fluid Dynamics

Lecture 3*: OpenFOAM code and structure
Taught by Prof. Ville Vuorinen
Presenter: MEng. Ilya Morev

*Lectures 3 and 4 had to be swapped this year

Part 2

​Part 1

How to do simulations?

How do solvers work?

OpenFOAM

​Part 1

How to do simulations?

Terminology

Solver
Executable application designed to solve a specific problem in fluid
or continuum mechanics (scalarTransportFoam, icoFoam,...)

Utility
Executable application, designed to perform tasks that involve data
manipulation (blockMesh, postProcess, foamListTimes,...)

Library
Precompiled C++ libraries that are dynamically linked to the
solvers and utilities. There are separate libraries containing e.g.
turbulence models, post-processing functions, etc.

Case
folder

Folder containing OpenFOAM dictionaries, describing particular
problem (case)

Dictionary
A file/entity that contains data entries in the format
understandable by OpenFOAM (0/U, system/controlDict, ...)

Function
objects

Tools to ease workflow configurations and enhance workflows by
producing additional user-requested data

github.com/OpenFOAM/OpenFOAM-10
/opt/openfoam10/

OpenFOAM 10 – open-source CFD library

1. Post-processing and
 sampling
2. Visualization

1. Running solvers
2. Run-time controls

1. Choose solver
2. Set up case dictionaries
3. Generate mesh
4. (optional) Adding extra
 terms and constraints
5. (optional) Set up function
 objects

OpenFOAM

Pre-processing Solving Post-processing

Example list of solvers

scalarTransportFoam Convection-diffusion of a passive scalar

icoFoam Simplified PISO solver for incompressible, laminar flow of Newtonian fluids

simpleFoam Incompressible fluid flow solver, using SIMPLE algorithm. Used for steady-state flows

pisoFoam Incompressible fluid flow solver, using PISO algorithm. Used for transient flows

pimpleFoam Incompressible fluid flow solver, using PIMPLE algorithm. Used for transient flows

rhoPimpleFoam Compressible fluid flow solver, using PIMPLE algorithm

buoyantPimpleFoam Compressible fluid flow solver with buoyancy modeling, using PIMPLE algorithm

reactingFoam Compressible reacting fluid flow solver with chemistry reactions, using PIMPLE algorithm

interFoam
Two incompressible fluids flow solver using “volume of fluid” model, using PIMPLE
algorithm

interPhaseChangeFoam
Two incompressible fluids flow solvers using “volume of fluid” model with phase-change,
using PIMPLE algorithm

multiphaseEulerFoam System of any number of compressible fluid phases flow solver, using PIMPLE algorithm

1. Choosing solver

OpenFOAM

Solving Post-processing
Pre-processing

https://doc.cfd.direct/openfoam/user-guide-v10/standard-solvers

https://doc.cfd.direct/openfoam/user-guide-v10/standard-solvers

<Case folder >

0

p

T

U

constant

polyMesh
...

momentumTransport

physicalProperties

system

blockMeshDict

controlDict

fvSchemes

fvSolution

Initial and boundary
conditions for fields

Mesh files

Turbulence models

Physical constants,
equations of state, etc.

Instructions for blockMesh utility

Time stepping, data writing controls,
additional function objects setup
Discretization schemes

Matrix solvers and pressure velocity
coupling algorithms setup

2. Setting up case dictionaries

OpenFOAM

Solving Post-processing
Pre-processing

Usually starts with copying tutorial case

Ordered list of point
coordinate triplets

Specifications of
boundary patches

Ordered list of points
numbers, defining faces

Specifications, which face
belongs to which cell

Main mesh generation utilities

blockMesh for simple structured
meshes

snappyHexMesh for meshing complex
geometries (using stl, obj,
vtk, ...)

starToFoam
fluentMeshToFoam
gmshToFoam
…

import 3rd party mesh
formats

3. Mesh generation

OpenFOAM

Solving Post-processing
Pre-processing

< polyMesh>

boundary

cellZones

faces

faceZones

neighbour

owner

points

pointZones

https://github.com/OpenFOAM/OpenFOAM-10/tree/master/applications/utilities/mesh https://doc.cfd.direct/notes/cfd-general-principles/computational-mesh

https://github.com/OpenFOAM/OpenFOAM-10/tree/master/applications/utilities/mesh
https://doc.cfd.direct/notes/cfd-general-principles/computational-mesh

4. Adding extra terms and constraints 5. Set up function objects

constant/fvModels system/controlDict

OpenFOAM

Solving Post-processing
Pre-processing

system/fvConstraints

https://github.com/OpenFOAM/OpenFOAM-10/tree/master/src/fvConstraints
https://github.com/OpenFOAM/OpenFOAM-10/tree/master/src/fvModels

foamInfo -a heatSource
foamInfo -a limitPressure

Command to show info and find usage examples:

https://doc.cfd.direct/openfoam/user-guide-v10/post-processing-cli

scalarTransportFoam -listFvModels
scalarTransportFoam -listFvConstraints

Commands to list available options:

scalarTransportFoam -listFunctionObjects
FoamInfo -a probes

https://github.com/OpenFOAM/OpenFOAM-10/tree/master/src/fvConstraints
https://github.com/OpenFOAM/OpenFOAM-10/tree/master/src/fvModels
https://doc.cfd.direct/openfoam/user-guide-v10/post-processing-cli
https://doc.cfd.direct/openfoam/user-guide-v10/post-processing-cli

Pre-processing

1. Running solver 2. Run-time controls

a) On a single core

b) On multiple cores (requires
system/decomposeParDict)

c) On supercomputing cluster: using
schedulers

If you set in system/controlDict:

You can modify entries in dictionaries during run-
time.
E.g. adjust tolerances, change write times,
change time step etc.

You can also track residuals of your simulation
using foamMonitor utility.

You can stop the simulation and write the fields
immediately by setting in system/controlDict:

scalarTransportFoam

decomposePar
mpirun -np 4 scalarTransportFoam -parallel
reconstructPar

runTimeModifiable true;

OpenFOAM

Post-processing
Solving

stopAt writeNow;

1. Post-processing and sampling 2. Visualization

Utility postProcess can execute functionObjects
after simulation is finished.
E.g. sample data over a line (requires file
system/singleGraph):

Use paraFoam to visualize fields, make videos,
renders, plots, etc.

postProcess -func singleGraph

OpenFOAM

Solving
Post-processing

Pre-processing

Or export the data to 3rd part format, e.g. VTK:

foamToVTK

​Part 2

How do solvers work?

Main question:

How does OpenFOAM solver proceed from one time step to the next one?

Δ t

t=0 t=t end

t

1. Equations are integrated over some time step.
2. New values of fields (u, p, T…) are obtained
and then used as initial values for next iteration.

Time-marching

Matrix equation solver logs. But where does the matrix come from?

∂ c
∂ t

+u⃗⋅∇ c−α∇
2 c=ω̇c

Temporal
derivative

Convection Diffusion Source

Scalar transport equation

(
a11 a12 ⋯ a1N
a21 a22 ⋯ a2N
⋮ ⋮ ⋱ ⋮
aN 1 aN 2 ⋯ aNN

)⋅(
c1
t 1

c2
t 1

⋮

cN
t 1)=(

b1
b2
⋮
bN

)

c (t= t0)=c
t0

Δ t=t1−t 0

c t 1−?

Time step

Initial condition

N – number of cells

∂c
∂ t

+∇⋅(u⃗ c)=0

aP c P
t 1+∑

N i

aN i cN i

t1 =bP

Δ x0 L

0

1

x

c
1d convection of a Gaussian
Goal: calculate field c after Δt

N1 N2P

f 1 f 2

Implicit Euler temporal
discretization:

cP
t1−c P

t 0

Δ t
+u
c f 2
t1−c f 1

t 1

Δ x
=0

1
V P

∫
V P

∇⋅(u⃗ c)dV=
1
V P

∫
A P

(u⃗ c) n⃗ dA P≈
1
V P

∑
f
(u⃗f c f)⋅n⃗f A f=

uf 2 cf 2−uf 1 c f 1
Δ x

=u
c f 2−cf 1
Δ x

Gauss
theorem

Finite number of
faces

1d uniform
mesh

Constant
velocity

Integrate over
cell P

We have 1 equation for
each of 5 cells. Total:
● 5 equations
● 5 unknowns

linear upwind

c f 1=
cN1+cP
2

c f 1=cP

u=const>0 , t 1=t 0+Δ tt 1=t 0+Δ t ,

Putting constant
coefficients to a

i

Interpolating c
f1
, c

f2

5 cells

n⃗f 2

aP c P
t 1+∑

N i

aN i cN i

t1 =b

A c⃗ t 1= b⃗(
a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

)⋅(
c1
t1

c2
t1

c3
t1

c4
t1

c5
t1
)=(

b1
b2
b3
b4
b5

)

Δ x0 L

0

1

x

c

N1 N2P

f 1 f 2

Diagonal
Components

(“owner”)

Off-diagonal
Components
(“neighbor”)

Use some matrix
solver to obtain field c

at time t
1Known coefficient matrix Field vector

to be solved
Known vector

of explicit
terms

n⃗f 2

∂c
∂ t

+u⃗⋅∇ c−α ∇
2c=ω̇c

scalarTransportFoam source code
Located in applications/solvers/basic/scalarTransportFoam/

Matrix equation
is constructed here A c⃗ t 1= b⃗
Call matrix solver, defined in
system/fvSolution

Loop over time steps, as defined in
system/controlDict

Write data, if current time step fits
writeTime defined in system/controlDict

Discretization schemes
Located in system/fvSchemes

Temporal discretization schemes:
Euler (1st ord.), backward (2nd ord.), ...

Component of gradient normal to a cell face

Cell to face interpolations of values.
Used in the interpolation of velocity to
face centers for the calculation of flux

div(phi,...) are the most important
schemes usually! Here we discretize
convection term.
upwind (1st ord.), linear (2nd ord.),
limitedLinear, Gamma and vanLeer are
probably the most common choices

∂

∂ t

∇

∇⋅

∇
2

In the most cases, linear works perfectly
well here. In our applications we discretize
pressure gradient here.

∇ n

The keyword “linear” refers to interpolation
scheme, where linear is usually enough.
The second keyword in surface normal
gradient scheme, which usually is either
orthogonal or corrected (for meshes with
orthogonality)

c f

foamSearch -c $FOAM_TUTORIALS fvSchemes "divSchemes/div(phi,U)"

Check what schemes are used in tutorials:

Flux limiting schemes

Δ x0 L

0

1

x

c

N1 N2P

f 1 f 2

c f 1=c f 1
low

−ϕ(rN1)(c f 1
low

−c f 1
high

)

r P=
cP−cN1
cN2−cP

linear upwind

c f 1=
cN1+cP
2

c f 1=cP

Interpolating c
f

Recall:

c f 1
low

c f 1
high

ϕ(rP) - flux limiter function

- high resolution flux (linear)

- low resolution flux (upwind)

- ratio of successive
gradients

c f 2=c f 2
low

−ϕ(rP)(c f 2
low

−c f 2
high

)

Recall lecture 3:
projection method

Pressure-velocity coupling algorithms

Start with Navier-Stokes equations:

∇⋅u⃗=0
∂ u⃗
∂ t

+u⃗⋅∇ u⃗−∇⋅(ν∇ u⃗)=−∇ p

Semi-discretize LHS
(velocity and pressure
gradient are unknown):

M u⃗= b⃗−∇ p

A u⃗−H=−∇ p

H=A u⃗−M u⃗+ b⃗

u⃗=A−1H−A−1∇ p
Substitute to the

continuity equation

∇⋅(A−1∇ p)=∇⋅(A−1H)

Off-diagonal part of M,
evaluated with u from

prev. solution

Diagonal
matrix

p
Poisson equation

A

1. Momentum predictor
Solve the momentum equation for the
velocity field. This velocity field does
not satisfy the continuity equation.

3. Pressure-corrector
Solve the Poisson equation for the
pressure field.

4. Explicit velocity calculation
Use the pressure field to calculate new
velocity field, satisfying the continuity
equation. Pressure field is not corrected
anymore

M u⃗=−∇ p

∇⋅(A−1
∇ p)=∇⋅(A−1H)

u⃗= A−1 H− A−1
∇ p

2. Explicit part evaluation
Use the velocity to calculate explicit
part H

H=A u⃗−M u⃗+ b⃗

In
n

er
 c

or
re

ct
or

 (
P

IS
O

 lo
op

)

O
u

te
r

co
rr

ec
to

r
(S

IM
P

L
E

 lo
op

)
Initial guess

no
n-

or
th

og
on

al
 c

or
re

ct
or

OpenFOAM code (icoFoam)Simplified solution scheme

Pressure-velocity coupling algorithms
Parameters are located in system/fvSolution

momentumPredictor switch controlling the momentum predictor. Can be set
to “off” for some flows, including low Reynolds number
and multiphase.

nOuterCorrectors sets the number of outer correctors, number of loops
over the entire system of equations within on time step,
representing the total number of times the system is
solved; must be ≥ 1 and is typically set to 1, replicating
the PISO algorithm. If you experience pressure
fluctuations, increasing this number can help.

nCorrectors sets the number of inner correctors, i.e. times the
algorithm solves the pressure equation and momentum
corrector in each step; typically set to 2 or 3.

nNonOrthogonalCorrectors specifies repeated solutions of the pressure equation,
used to update the explicit non-orthogonal correction;
typically set to 0 for orthogonal meshes and ≥ 1 for
meshes with non-orthogonality

Further reading:
SIMPLE: https://openfoamwiki.net/index.php/The_SIMPLE_algorithm_in_OpenFOAM
PISO: https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PISO_algorithm_in_OpenFOAM
PIMPLE: https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PIMPLE_algorithm_in_OpenFOAM

https://openfoamwiki.net/index.php/The_SIMPLE_algorithm_in_OpenFOAM
https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PISO_algorithm_in_OpenFOAM
https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PIMPLE_algorithm_in_OpenFOAM

Matrix solver setup
Located in system/fvSolution A c⃗=b⃗ c⃗

Usually:
● PCG with DIC preconditioner
● GAMG with GaussSeidel smoother

Tolerance for the final inner corrector step.
Usually tolerance is tightened here and
relTol=0

relToli=
residuali
residual0

⃗residual i=A c⃗guess
i
−b⃗

Solver selection here depends on your
grid parameters, which determines the
filling of your matrix.
PBiCGStab with DILU preconditioner is
quite robust

Further reading

User guide:
 Online: https://doc.cfd.direct/openfoam/user-guide-v10/index
 Offline: /opt/openfoam10/doc/Guides/OpenFOAMUserGuide-A4.pdf
Programmers Guide:
 https://sourceforge.net/projects/openfoam/files/v2112/ProgrammersGuide.pdf/download
CFD textbook by authors of OpenFOAM (free web version):
 https://doc.cfd.direct/notes/cfd-general-principles/ User guide

Tutorial relevant to HW2

Programmer’s guide

Textbook

https://doc.cfd.direct/openfoam/user-guide-v10/index
https://sourceforge.net/projects/openfoam/files/v2112/ProgrammersGuide.pdf/download
https://doc.cfd.direct/notes/cfd-general-principles/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

