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Lecture 4: OpenFOAM Lecture 5: Simulating fluid physicalm Lecture 6: Simulating fluid physical
code and structure phenomena: part A phenomena: part B

feVectorMatrix UEqm
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*Lectures 3 and 4 had to be swapped this year



OpenFOAM

Part 1

How to do simulations?

Part 2

How do solvers work?



Part 1

How to do simulations?



Solver

Utility

Library

Case
folder

Dictionary

Function
objects

Terminology

Executable application designed to solve a specific problem in fluid
or continuum mechanics (scalarTransportFoam, icoFoam,...)

Executable application, designed to perform tasks that involve data
manipulation (blockMesh, postProcess, foamListTimes,...)

Precompiled C++ libraries that are dynamically linked to the
solvers and utilities. There are separate libraries containing e.g.
turbulence models, post-processing functions, etc.

Folder containing OpenFOAM dictionaries, describing particular
problem (case)

A file/entity that contains data entries in the format
understandable by OpenFOAM (0/U, system/controlDict, ...)

Tools to ease workflow configurations and enhance workflows by
producing additional user-requested data



OpenFOAM 10 - open-source CFD library

github.com/OpenFOAM/OpenFOAM-10
/opt/openfoam10/

O Product + Solutions ~+  Open Source ~ Pricing C Sign in ‘ Sign up |
opk openfoami10

(] OpenFOAI\/I/OpenFOAM-10 Public £\ Notifications % Fork 18 ¥¥ Star 34

applications
<> Code (9 Issues 4 i1 Pullrequests () Actions [ Projects (O Security |~ Insights

¥ master v+ P 1branch © 157 tags Go to file m About

OpenFOAM Foundation repository for
Will Bainbridge HookFunctions: Corre... c4cf895 on Dec 7, 2022 @ 6,060 commits OpenFOAM version 10

applications rhoParticleFoam: Permit use with thermo cl... last month Readme
View license
bin HookFunctions: Corrected change to versio... last month
34 stars

doc Guides: corrections to 4.9.2 Macro expansion 2 months ago .
3 watching

etc caseDicts/annotated: Removed dicts for del... 5 months ago 18 forks

src fvMeshTopoChangers::refiner: Added chang... 2 months ago

test Updated for OpenFOAM-10 6 months ago Releases

tutorials tutorials: hotRoomComfort: Restored bound. .. 4 months ago © 157 tags

wmake wmake/rules: Removed temporary -fno-tree-... last year Allwmake

.gitattributes Added _gitattributes file to make language re... 2 years ago Packages

build-stamp
.gitignore Ignore ycm files 4 years ago No packages published

Allwmake Allwmake: Provides clearer message when ... 6 years ago L
COPYING COPYING: Updated date and contact details 5 years ago Languages README.org

README.org Updated for OpenFOAM-10 6 months ago " i
C++ 97.9% Shell 1.6%




OpenFOAM

Pre-processing Solving Post-processing
1. Choose solver 1. Running solvers 1. Post-processing and
2. Set up case dictionaries 2. Run-time controls sampling
3. Generate mesh 2. Visualization

4. (optional) Adding extra
terms and constraints

5. (optional) Set up function
objects
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Solving Post-processing

Pre-processing

1. Choosing solver

scalarTransportFoam

icoFoam
simpleFoam
pisoFoam
pimpleFoam
rhoPimpleFoam
buoyantPimpleFoam

reactingFoam

interFoam

interPhaseChangeFoam

multiphaseEulerFoam

Example list of solvers

Convection-diffusion of a passive scalar

Simplified PISO solver for incompressible, laminar flow of Newtonian fluids
Incompressible fluid flow solver, using SIMPLE algorithm. Used for steady-state flows
Incompressible fluid flow solver, using PISO algorithm. Used for transient flows
Incompressible fluid flow solver, using PIMPLE algorithm. Used for transient flows
Compressible fluid flow solver, using PIMPLE algorithm

Compressible fluid flow solver with buoyancy modeling, using PIMPLE algorithm

Compressible reacting fluid flow solver with chemistry reactions, using PIMPLE algorithm

Two incompressible fluids flow solver using “volume of fluid” model, using PIMPLE
algorithm

Two incompressible fluids flow solvers using “volume of fluid” model with phase-change,
using PIMPLE algorithm

System of any number of compressible fluid phases flow solver, using PIMPLE algorithm



https://doc.cfd.direct/openfoam/user-guide-v10/standard-solvers

OpenFOAM

Pre-processing
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Solving Post-processing

2. Setting up case dictionaries

Usually starts with copying tutorial case

. <Case folder >
— M o

Y

T

U

B . constant

— . polyMesh
L

— momentumTransport

— physicalProperties

— . system

— blockMeshDict

— controlDict

— fvSchemes

— fvSolution

Initial and boundary
conditions for fields

Mesh files

Turbulence models

Physical constants,
equations of state, etc.

Instructions for blockMesh utility

Time stepping, data writing controls,
additional function objects setup

Discretization schemes

Matrix solvers and pressure velocity
coupling algorithms setup



OpenFOAM
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3. Mesh generation

Main mesh generation utilities

- < polyMesh >

ficat ¢ blockMesh for simple structured
L beundany Spec(ljlcatlonsr? meshes
oundary patches snappyHexMesh for meshing complex
— cellZones geometries (using stl, obj,
I Ordered list of points 8 o)
numbers, defining faces starToFoam import 3rd party mesh
— faceZones fluentMeshToFoam formats
gmshToFoam
— nheighbour } Specifications, which face
" vineEr belongs to which cell neighbour point /vertex
' ' cell
| points > Order_ed list (_)f point
coordinate triplets
— pointZones

https://github.com/OpenFOAM/OpenFOAM-10/tree/master/applications/utilities/mesh  https://doc.cfd.direct/notes/cfd-general-principles/computational-mesh



https://github.com/OpenFOAM/OpenFOAM-10/tree/master/applications/utilities/mesh
https://doc.cfd.direct/notes/cfd-general-principles/computational-mesh
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_ Solving Post-processing
Pre-processing
4. Adding extra terms and constraints 5. Set up function objects
constant/fvModels system/controlDict
energySource ‘Eunctions
probes
type heatSource; { A proves; ”
selectionMode all; \}J:"Ii)ie(bntrol éir}l;giggflmglso &
writeInterval 1;
q e7;
} fields
(
system/fvConstraints )
limitp probeLocations
{ (
type limitPressure; E: : 4 8;
min by (0.€ 53 0)
; (€ ) 0)
max : (0 5 0)
| etk
Commands to list available options: )
scalarTransportFoam -listFvModels }

scalarTransportFoam -listFvConstraints e R R el B pRre e = e
Command to show info and find usage examples: #includeFunc scalarTransport

foamInfo -a heatSource :

foamInfo -a limitPressure scalarTransportFoam -listFunctionObjects

FoamInfo -a probes


https://github.com/OpenFOAM/OpenFOAM-10/tree/master/src/fvConstraints
https://github.com/OpenFOAM/OpenFOAM-10/tree/master/src/fvModels
https://doc.cfd.direct/openfoam/user-guide-v10/post-processing-cli
https://doc.cfd.direct/openfoam/user-guide-v10/post-processing-cli
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/ \

Pre-processing _ Post-processing
Solving
1. Running solver 2. Run-time controls
a) On a single core If you set in system/controlDict:
scalarTransportFoam runTimeModifiable true;
b) On multiple cores (requires You can modify entries in dictionaries during run-
system/decomposeParDict) time.
T E.g. adjust tolerances, change write times,
mpirun -np 4 scalarTransportFoam -parallel change time step etc.
reconstructPar ] ] ]
_ _ You can also track residuals of your simulation
c) On supercomputing cluster: using using foamMonitor utility.
schedulers

You can stop the simulation and write the fields
immediately by setting in system/controlDict:

StopAt writeNow;



OpenFOAM
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Pre-processing

1. Post-processing and sampling

Utility postProcess can execute functionObjects
after simulation is finished.

E.g. sample data over a line (requires file
system/singleGraph).

postProcess -func singleGraph

Open ~ M

.294375
.490625
.686875
.883125
87937
27562
.47187
.66812
.86437
.06062
.25687
45312

NNNREREMRMENEREEBEOOOOOGOO

line_T.xy
-[OpenFOAM/morevi1-8/run/A1/postProcessing/...

0.0050457
0.0219314
0.025386
0.00392596
-0.037068
-0.0748786
-0.0791233
-0.0279486
0.082219
8.233703
0.395413
0.534167

PlainText * Tabwidth:8 ~

Save = - o @

Y

Solving

Post-processing

2. Visualization

Use paraFoam to visualize fields, make videos,
renders, plots, etc.
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Or export the data to 3" part format, e.g. VTK:
foamToVTK



Part 2

How do solvers work?



Main question:

How does OpenFOAM solver proceed from one time step to the next one?

-
-

Time = 0.96

smoothSolver:

Time = 0.965

smoothSolver:

Time = 0.97

Solving for T, Initial residual = 0.0190827, Final residual = 2.62384e-06, No Iterations 2

Solving for T, Initial residual = 0.0190088, Final residual = 2.47331e-06, No Iterations 2 —

Matrix equation solver logs. But where does the matrix come from? -




Scalar transport equation

Initial condition

Time step

At=t, —t,
Temporal  Convection Diffusion Source
derivative ¢

N — number of cells




C
1d convection of a Gaussian 1
Goal: calculate field c after At

u=const>0, t,=t,+At, 5cells

Integrate over

cell P
o P P P TP ¢
A x A x
Gauss Finite number of 1d uniform Constant
theorem faces mesh velocity

Implicit Euler temporal _
discretization: Putting constant
coefficients to a

Interpolating ¢, C,,

: : We have 1 equation for
linear

- upwind each of 5 cells. Total:
_ N "P C,=Cp * 5 equations

5 unknowns



Diagonal
Components
(“owner”)

Off-diagonal
Components
(“neighbor”)

Known coefficient matrix

Field vector Known vector

to be solved

of explicit
terms

-
t

AcC 125

Use some matrix
solver to obtain field ¢
attime t,



scalarTransportFoam source code

Located in applications/solvers/basic/scalarTransportFoam/

Info<< "\nCalculating scalar transport\n" << endl;
#include "CourantNo.H"

while (simple.loop(runTime))

{
Info<< "Time = " << runTime.userTimeName() << nl << endl;
fvModels.correct();
while (simple.correctNonOrthogonal())
{
fvScalarMatrix TEqn
(
fvm: :ddt(T)
+ fvm::div(phi, T)
- fvm::laplacian(DT, T)
fvModels.source(T)
)
TEqn.relax();
fvConstraints.constrain(TEqn);
TEqn.solve();
fvConstraints.constrain(T);
}
runTime.write();
}
Info<< "End\n" << endl;
Time = 0.96

smoothSolver: Solving for T, Initial residual
Time = 0.965

smoothSolver: Solving for T, Initial residual
Time = 0.97

0.0190827, Final residual

0.0190088, Final residual

Loop over time steps, as defined in
system/controlDict

a—C+u Vec—aVic=o,

ot

Matrix equation
IS constructed here

Call matrix solver, defined in
system/fvSolution

Write data, if current time step fits
writeTime defined in system/controlDict

2.62384e-06, No Iterations 2

2.47331e-06, No Iterations 2



Discretization schemes
Located in system/fvSchemes

ddtSchemes
{
default Euler;
¥
gradSchemes
{
default Gauss linear;
grad(p) Gauss linear;
¥
divSchemes
{
default none;
div(phi,T) Gauss linear;
}
laplacianSchemes
{
default Gauss linear orthogonal;
}
interpolationSchemes
{
default linear;
}
snGradSchemes
{
default orthogonal;
}

Check what schemes are used in tutorials:

foamSearch -c $FOAM_TUTORIALS fvSchemes "divSchemes/div(phi,U)"

V-

Temporal discretization schemes:
Euler (1% ord.), backward (2™ ord.), ...

In the most cases, linear works perfectly
well here. In our applications we discretize
pressure gradient here.

div(phi,...) are the most important
schemes usually! Here we discretize
convection term.

upwind (1% ord.), linear (2" ord.),
limitedLinear, Gamma and vanlLeer are
probably the most common choices

The keyword “linear” refers to interpolation
scheme, where linear is usually enough.
The second keyword in surface normal
gradient scheme, which usually is either
orthogonal or corrected (for meshes with
orthogonality)

Cell to face interpolations of values.

Used in the interpolation of velocity to
face centers for the calculation of flux

Component of gradient normal to a cell face



Flux limiting schemes Recall:

Interpolating c,
low

| high
cp=cp = plra)lef —¢i”) inear upwind

CfIZCP

- ratio of successive
gradients

Admissible limiter region for second-order TVD schemes
(Sweby, 1984)




ded into two parts via “Helmholtz-Hodge”

ivi

Vector fields can be d

decomposition

Conservation of Mass
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Conservation of Mass

Pressure-velocity coupling algorithms

Start with Navier-Stokes equations:

f Our field = mass conserving + gradient

Hodge decomposition

Semi-discretize LHS

(velocity and pressure
gradient are unknown):

—
-
Miu=b—Vp
Di | Off-diagonal part of M, —
ﬁgﬁ&a SEECLIGIR I [ — A a — M a + b
prev. solution

Ati—H=-Vp

i=A"'"H-A"'Vp

Substitute to the
continuity equation

Poisson equation




Simplified solution scheme OpenFOAM code (icoFoam)

Initial guess fuVectorMatrix UEqn
. (
1. Momentum predictor fym: :ddt (U)
Solve the momentum equation for the B E
. . . . . - fvm::laplacian(nu, U)
velocity field. This velocity field does )

not satisfy the continuity equation. e .
if (simple.momentumPredictor())

—— {
solve (UEan = -fuc: grad p));

fvOptions.correct(U);

}
2. Explicit part evaluation
3 A volScalarField rAU( JUEgQn.A());
Use the VeIOCIty to CaICUIate EXp|ICIt volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
part H surfaceScalarField phiHbyA

(

- - 7 "phiHbyA",
HIAU _Mu+b fvc: : flux(HbyA)

+ fvc::interpolate(rAU)*fvc::ddtCorr(U, phi)
):

// Non-orthogonal pressure corrector loop
while (simple.correctNonOrthogonal())

{

3. Pressure-corrector
Solve the Poisson equation for the

field fvScalarMatrix pEgn
pressure tield.

(
e

pEgn.setReference(pRefCell, pRefValue);

fvm::laplacian(rAtU(), p) == fvc::div(phiHbyA)

pEgn.solve();

non-orthogonal corrector

4, EXpliCit velocity calculation if (simple.finalNonOrthogonallter())
Use the pressure field to calculate new {
velocity field, satisfying the continuity
equation. Pressure field is not corrected
anymore

ﬁ:A‘lH_A_lv . U = HbyA - rAU*fvc::grad(p);

phi = phiHbyA - pEgn.flux();



Pressure-velocity coupling algorithms PIMPLE

Parameters are located in system/fvSolution

{

momentumPredictor no;
nOuterCorrectors 1;
nCorrectors P

nNonOrthogonalCorrectors 0;

momentumPredictor

switch controlling the momentum predictor. Can be set
to “off” for some flows, including low Reynolds number
and multiphase.

nOuterCorrectors

sets the number of correctors, number of loops
over the entire system of equations within on time step,
representing the total number of times the system is
solved; must be = 1 and is typically set to 1, replicating
the PISO algorithm. If you experience pressure
fluctuations, increasing this number can help.

nCorrectors

sets the number of correctors, i.e. times the
algorithm solves the pressure equation and momentum
corrector in each step; typically set to 2 or 3.

NNonOrthogonalCorrectors

specifies repeated solutions of the pressure equation,
used to update the explicit non-orthogonal correction;
typically set to O for orthogonal meshes and > 1 for
meshes with non-orthogonality

Further reading:
SIMPLE:

PISO:

PIMPLE:



https://openfoamwiki.net/index.php/The_SIMPLE_algorithm_in_OpenFOAM
https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PISO_algorithm_in_OpenFOAM
https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PIMPLE_algorithm_in_OpenFOAM

Matrix solver setup
Located in system/fvSolution

A

~b

guess

residual, =A ¢

re]Ttﬂj::EEEBiEEE_

residual

solvers
{
p
{
solver PEG; .
preconditioner DIC; Usually: _ .
tolerance : « PCG with DIC preconditioner
relTol 9.65; * GAMG with GaussSeidel smoother
}
pFinal
{ &p: Tolerance for the final step.
P ..
relTall 0; Usually tolerance is tightened here and
} relTol=0
U
{
zggg‘iger zmggﬂggég‘;géll Solver selection here depends on your
e 05 grl_d parameters, WhICh determines the
relTol 0 filling of your matrix.
} PBICGStab with DILU preconditioner is
b quite robust
Time = 0.295
smoothSolver: Solving for Ux, Initial residual = 0.00336414, Final residual = 4.87212e-06, No Iterations 2
smoothSolver: Solving for Uy, Initial residual = 0.00395571, Final residual = 6.13208e-06, No Iterations 2
DICPCG: Solwving for p, Initial residual = 0.00198918, Final residual = 9.51425e-05, No Iterations 27
time step continuity errors : sum local = 1.56381e-08, global = 5.72285e-20, cumulative = 2.48268e-20
DICPCG: Solving for p, Initial residual = 0.00061602, Final residual = 9.64995e-07, No Iterations 65
time step continuity errors : sum local = 1.49115e-10, global = 2.02111e-20, cumulative = 4.50379%e-20
ExecutionTime = 0.31 s ClockTime = 1 s



Further reading

User guide:
Online:

Offline: /opt/openfoam10/doc/Guides/OpenFOAMUserGuide-A4.pdf

Programmers Guide:

CFD textbook by authors of OpenFOAM (free web version):

Textbook

Time, Sec. 3.17 Laplacian, Sec. 3.7
Usnally 1st-order surface normal

Euler scheme, Eq. (3.21) gradient, Sec. 3.8

Znd-order to preserve non-orthogonal correction

transient structures, Eq. (3.7) for 0y, < 75°

e.g. large eddies, waves

limited correction

O

for O =

r)u +Ve(uu) — Ve (vVu) = -Vp
ot . *

Advection, Sec. 3.

linear interpolation, Eq. (3.4)

Gradient, Eq. (3.18)

creeping flows, large eddy simulation

linear upwind, Sec. 3.14
decreasing

with gradient limiting, Sec. 3.16 At
= - accuracy

limited linear, Eq. (3.13) _—

g A ’ ITCTEeastng
minmod, Eq. (3.14) stability
upwind interpolation, Sec. 3.10

fast-converging, approximate solution

User guide

Tutorial relevant to HW2

Programmer’s guide

Operation Comment

Addition
Subtraction

Scalar multiplication

Scalar division
Outer product
III]N"‘I' ]]l'l_:-[llllj_'l

E
o
"

ol

=\
+ 1
+ 1

‘I_ 1
T

L]

A
L

[1

Mathematical
Description
a+b

a—b

sa

a/s

ab

asb



https://doc.cfd.direct/openfoam/user-guide-v10/index
https://sourceforge.net/projects/openfoam/files/v2112/ProgrammersGuide.pdf/download
https://doc.cfd.direct/notes/cfd-general-principles/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

