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After the lecture the student: 

- Can explain what is the role of pressure in incompressible 
flows. 

- Can explain the basic idea how Navier-Stokes equation is 
discretized in fvm using projection method and explicit time 
integration. 

Intended learning objectives of the full lecture
 



  

Navier-Stokes equations 
Clay Institute: Among the 7 most important unsolved problems in math 

https://upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Ggstokes.jpg/300px-Ggstokes.jpghttps://upload.wikimedia.org/wikipedia/commons/9/9a/Claude-Louis_Navier.jpg

https://en.wikipedia.org/wiki/Navier–Stokes_equations

https://upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Ggstokes.jpg/300px-Ggstokes.jpg
https://upload.wikimedia.org/wikipedia/commons/9/9a/Claude-Louis_Navier.jpg
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations


  

1) Physics identification.  

2) Mathematical equations and physics interpretation. 
Boundary/initial conditions.

3) Objectives, feasibility, and time-constraints. 

4) Numerical method and modeling assumptions.

5) Geometry and mesh generation. 

6) Computing i.e. running simulation. 

7) Visualization and post-processing.

8) Validation and verification, reference data. Reporting, 
analysis and discussion of the results. Are the results sane?  

CFD simulation and PDE solution includes at least 
the following aspects covered on the course

 



  

Motivational aspects to study flow in a cavity
Relevance: HW2



  

Homework 2: Lid driven cavity
Moving lid creates a vortex in a box

Re=
U d
ν

U=U lid

U=0⃗

Fluid

Wall

Wall

Wall

Lid

d

Reynolds number

τ=
d
U

Vortex turn-around time scale



  

Motivation: window induced airflow in a car is a simple 
example of “flow in a cavity” 

https://www.science.org/doi/epdf/10.1126/sciadv.abe0166
Mathai et al. (2021)

https://www.science.org/doi/epdf/10.1126/sciadv.abe0166


  

Motivation: another example for “flow in a cavity” could be wind flow 
pattern between two buildings

https://www.sciencedirect.com/science/article/abs/pii/S0269749116312398#undfig1
Zhong et al. (2017)

https://www.sciencedirect.com/science/article/abs/pii/S0269749116312398#undfig1


  

Homework 2: Lid driven cavity
Comparison of a Navier-Stokes simulation against reference data by Ghia et al. Here: Re=100 & resolution 602 points.

x-component of velocity y-component of velocity



  

Homework 2: Lid driven cavity
Comparison of a Navier-Stokes simulation against reference data by Ghia et al.

Pressure Velocities along horizontal and vertical lines



  

Incompressible Navier-Stokes equation



  

Rigid sphere analogy and incompressible flows:
what happens when one of the spheres is pushed in a box?

Wall

Force



  

A vortical motion appears when all other spheres “feel” the force while the wall keeps the spheres 
confined in the container. This is called “elliptical” or “global” character. In incompressible flows 

pressure is solved from Poisson eqn which is of such elliptical character: when fluid element 
moves all other elements will immediately feel that motion via the pressure changes. 

Wall

Force



  

Compressible and incompressible flows

∂ρ

∂ t
+∇⋅( u⃗ρ)=0

Continuity equation tells that mass is conserved (ρ = density):

∂ρ

∂ t
>0 ,∇⋅(u⃗ρ)<0

∂ρ

∂ t
<0 ,∇⋅(u⃗ρ)>0

Compression Expansion

∂ρ

∂ t
=0 ,∇⋅u⃗=0

Incompressible

Velocity vectors in a given point

∇⋅u⃗=0

The incompressibility condition: at each point massflow entering 
a control volume = mass flow exiting the control volume (ρ = constant). 

Compressible and incompressible flows
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Gauss theorem applied on the mass conservation law in a cross-draught 
situation (room with four windows):

x

y

z

∫V room
∇⋅u⃗ dV=∫A room

u⃗⋅ndA=0



  

The standard mass conservation law is commonly written on B.Sc./M.Sc. 
courses as U

1
A

1 
+ U

2
A

2  
= U

3
A

3 
+ U

4
A

4 
. Since -n

left 
= n

right 
we get:

x

y

z

∫A win1

u⃗⋅ndA+∫Awin2

u⃗⋅ndA=∫Awin3

u⃗⋅ndA+∫Awin 4

u⃗⋅ndA



  

Incompressible Navier-Stokes equation
Convection form

∂ui
∂ t

+ u⃗⋅∇ ui=−∇ p+ν∇
2ui

ith component of velocity Kinematic viscosity [m2/s]

Pressure

∇⋅u⃗=0

∂c
∂ t

+u⃗⋅∇ c=α∇
2c

Convection-diffusion eqn

Note: 
essentially
same eqn



  

Incompressible Navier-Stokes equation
 Conservative form

∂ui
∂ t

+∇⋅u⃗ ui=−∇ p+ν∇
2ui

ith component of velocity Kinematic viscosity [m2/s]

Pressure

∇⋅u⃗=0

∂c
∂ t

+∇⋅u⃗ c=α ∇
2c

Convection-diffusion eqn



  

Pressure in incompressible flows
Relevance: Non-linear convection term creates

divergence to velocity which must be “removed” by 
pressure gradient to obtain mass balance and

fulfill div(u) = 0 condition



  

Vector fields can be divided into two parts via “Helmholtz-Hodge” 
decomposition

u* u ∇ p



  

Mathematical background for the projection method
Vectors: C=convection term, D=diffusion term, P=pressure gradient

The core problem in solving incompressible Navier-Stokes method:
We would like to find a ∆u

i
=∆t(-C+D+P) to update solution at each grid point as 

u
i
n+1 = u

i
n + ∆u

i
. We can estimate C=C(x,y,z,t) & D=D(x,y,z,t) (t=n∆t). But how do we know 

the pressure gradient P=P(x,y,z,t) ? 

u*=u+∇ p ,where ∇⋅u=0  and ∇×∇ p=0

Helmholtz-Hodge theorem: any vector field u* can be expressed as a sum of fields 
as follows (B.Sc. math):

Consequence of Helmholtz-Hodge theorem: the function p is a solution of the Poisson 
eqn. If we could find u* then we can also solve p.

∇2 p=∇⋅u*
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Derivation of Poisson equation for pressure 1/2

∂ui
∂ t

+
∂u jui
∂ x j

=-
∂ p
∂ x i

+ν
∂2ui
∂ x j

2

∂
∂ t

∂u i
∂ x i

+ ∂
∂ x i

∂u jui
∂ x j

=-
∂

2 p
∂ x i

2 +ν ∂
2

∂ x j
2

∂ ui
∂ x i

Take divergence from both sides of NS-eqn



  

Derivation of Poisson equation for pressure 2/2

∂
∂ t

∂u i
∂ x i

+ ∂
∂ x i

∂u jui
∂ x j

=-
∂

2 p
∂ x i

2 +ν ∂
2

∂ x j
2

∂ ui
∂ x i

Incompressible flow 
→ div(u)=0

Incompressible flow 
→ div(u)=0

-
∂

2 p
∂ x i

2 =
∂ui
∂ x j

∂ u j
∂ xi

- ∇ 2 p=
∂u i
∂ x j

∂ u j
∂ xi

Poisson equation for pressure

In practice Poisson equation is a matrix equation which is solved with a linear 
system solver for A x = b (more later in the course).



  

Projection method in a nutshell

Step 1: Calculate velocity prediction u* using only C and D from previous timestep

Projection method

u*=un+Δ t(D−C )

Step 2: Calculate divergence of u* and use it as source term in Poisson equation to 
find p using a standard Poisson solver.

∇2 p=∇⋅u*

un+1=u
*−∇ p

Step 3: Calculate pressure gradient via e.g. CD2 and do pressure correction (projection)

Step 4: Based on Helmholz-Hodge theorem u
n+1 

is incompressible and mass conserving:
∇⋅un+1=0
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Basic idea of finite volume method: divide geometry into small 
volumes and update numerical solution at volume centroids by 

estimating e.g. mass & momentum fluxes through the faces of the 
control volumes during small time intervals

Control volume

V
P

V
N



  

Finite volume method in a nutshell for Navier-Stokes eqn 
and projection method. Discretization for Steps 1-3 is discussed below:

Step 1: fvm estimation of convection C
i
=C

i
(x,y,z,t) and diffusion  D

i
=D

i
(x,y,z,t) terms 

in Navier-Stokes eqn to find the prediction u* (t=n∆t): 

Ci=
1
V ∫V

∇⋅(uui)dV=
1
V ∫A

(uui)⋅ndA≈
1
V

Σfaces(u f u f
i
)⋅n f dA f

Di=
1
V ∫V

ν∇⋅∇ uidV=
1
V ∫A

ν∇ ui⋅ndA≈
1
V

Σfaces ν∇ u f
i
⋅nf dA f

Step 2a: fvm estimation of divergence of u*

∇⋅u*≈
1
V ∫V

∇⋅u*dV≈
1
V

Σfacesu f⋅n f dA f

Step 2b: fvm estimation of matrix eqn for pressure (more on matrices later on)

Δ p≈
1
V ∫V

∇⋅∇ pdV=
1
V ∫A

∇ p⋅ndA≈
1
V

Σfaces ∇ p f⋅n f dA f

Step 3: fvm estimation of pressure gradient

∇ p≈
1
V ∫V

∇ p dV=
1
V ∫A

pnidA i≈
1
V

Σfaces p f
i n f

i dA f
i
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