

EEN-E2001 Computational Fluid Dynamics Lecture 5: Fluid physical phenomena

Prof. Ville Vuorinen

February 13th 2023 Aalto University, School of Engineering

Intended learning objectives of the lecture

After the lecture the student:

- Can name basic fluid physical phenomena and connect them to HW3-HW5.

CFD simulation and PDE solution includes at least the following aspects covered on the course

- 1) Physics identification.
- 2) Mathematical equations and physics interpretation. Boundary/initial conditions.
- 3) Objectives, feasibility, and time-constraints.
- 4) Numerical method and modeling assumptions.
- 5) Geometry and mesh generation.
- 6) **Computing** i.e. running simulation.
- 7) Visualization and post-processing.

8) **Validation and verification, reference data**. Reporting, analysis and discussion of the results. Are the results sane?

Examples on physics phenomena in fluid dynamics

Free boundary layer Relevance: HW3

Free boundary layer (relevance: HW3)

Backward facing step flow Relevance: HW3-HW4

Real world "Backward facing step"

By Ralf Roletschek (talk) - Fahrradtechnik auf fahrradmonteur.de - Own work, FAL, https://commons.wikimedia.org/w/index.php?curid=15

Backward facing step

Backward facing step

Reynolds number:

Comment 1: constant velocity at inlet.

Comment 2: laminar boundary layer growth by viscous diffusion.

Comment 3: after viscous entry length, expect close to parabolic velocity profile U=U(y).

Backward facing step

Reynolds number:

Comment 4: flow recirculation zone (negative x-velocity).

Comment 5: stagnation point (x-velocity=0)

Comment 6: outlet (modeled commonly using zeroGradient or InletOutlet **bc in OpenFOAM)**

Important considerations

"Resolve":

Space: put enough grid points to resolve the length scales (we can not take photos with 5*5 pixels). **Time:** make timestep small enough. (Courant number, CFL number).

Resolve all the geometrical length scales:

channel height, step height, channel length, main chamber length/height.

Identify physics and refine grid accordingly:

- Laminar or turbulent.
- Turbulent flow: stricter space resolution requirement to resolve vortices of different size.
- Boundary layer thickness and near wall resolution (y+ value) \rightarrow necessary to understand in order to capture the wall shear stress (friction).
- Is there unsteady behavior e.g. vortex shedding? What is the oscillation frequency?

How long time should we simulate?

- → Depends on the case but rough guidelines to start with:
- Identify vortex turnaround time scale and simulate "at least tens of those time scales"
- Identify "flow through time scale" and simulate "at least a few of them"

Vortex turn-around time scale

Flow through time scale

$$\tau_{vortex} = \frac{d_{vortex}}{U_{vortex}}$$

$$au_{flow} = rac{L_{domain}}{U}$$

Flow over a cylinder Relevance: HW5

Flow over a cylinder

Flow over a cylinder

Turbulent flow

Relevance: Important to know later on but not course content.

Turbulent jets Below: we inject a concentration field in the jet flow to study mixing.

Here: passive scalar field averaged in time over several thousand cutplanes (time snapshots)

$$<\!P\!>=\!\frac{1}{N}\sum_{i=1}^N P_i$$

Standard Deviation

Turbulent channel flows

Here is a Matlab code to do turbulent channel flow. OpenFOAM also has relevant tutorials. https://www.sciencedirect.com/science/article/abs/pii/S0010465516300388

Fig. 5. Matlab simulations of instantaneous velocity in the channel (left), and visualization of the near-wall streaks at $y^+ \approx 10$ (right).

Note:

- Channel flows are very much studied configurations in understanding near-wall turbulence
- The "standard" for LES/DNS code benchmarking
- Steady flow maintained with the external force g
- Periodic boundary conditions

Turbulent channel flows – Mean velocity profiles

