

Prof. Ville Vuorinen
February 27th 2023

Aalto University, School of Engineering

EEN-E2001 Computational Fluid Dynamics

Lecture 6: Matrices, Ax=b and final
assignment

After the lecture the student:

- Understands how to get started and solve the final
assignment.

- Can explain what is a discretization matrix and how to

solve 1d Poisson equation with matrices.

Intended learning objectives of the lecture

1) Physics identification.

2) Mathematical equations and physics interpretation.
Boundary/initial conditions.

3) Objectives, feasibility, and time-constraints.

4) Numerical method and modeling assumptions.

5) Geometry and mesh generation.

6) Computing i.e. running simulation.

7) Visualization and post-processing.

8) Validation and verification, reference data. Reporting,
analysis and discussion of the results. Are the results sane?

CFD simulation and PDE solution includes at least
the following aspects covered on the course

Connection between viscous and thermal boundary
layers (TBL relevance: final assignment)

Temperature field and thermal BL:
Key physics: thermal diffusion builds up the BL structure

Velocity field in a laminar channel flow and viscous BL:
Key physics: viscous diffusion (viscosity) builds up the BL structure

Connection between viscous and thermal boundary
layers (TBL relevance: final assignment)

Temperature field and thermal BL:
Key physics: thermal diffusion builds up the BL structure

Velocity field in a laminar channel flow and viscous BL:
Key physics: viscous diffusion (viscosity) builds up the BL structure

∂T
∂ t

+ u⃗⋅∇ T=α ∇
2T

∂ui

∂ t
+ u⃗⋅∇ ui=−∇ p+ν∇

2 ui

∂2u1

∂ y2 =
∂ p
∂ x

α
∂2T

∂ x2 +α
∂2T

∂ y2 =u1
∂T
∂ x

Assumption: in steady state, the fully developed flow becomes 1d →u=(u
1
(y), 0)

In the final assignment, temperature field is solved in
a 2d channel assuming velocity = constant (slip walls).

Below: the idea of giving BCs and using ghost cells shown.

→ Temperature is stored into matrix of size (N
y
+2) x (N

x
+2)

→ Initialization of such a matrix in Matlab: T = zeros(Ny+2,Nx+2)
→ The boundary conditions are stored in 1st and last columns as well as
1st and last rows. Those “extra rows/cols” are called often “ghost cells”.
→ To update temperature at cell centers: T = T + dT;
→ Important: wall is not at cell center but dy/2 from cell center.

Constant wall value: T(1,:) = 2*Thot - T(2,:)

Constant wall value: T(Ny+2,:) = 2*Thot - T(Ny+1,:)

Constant inlet value:
T(:,1) = 2*Tcold – T(:,2)

Zero-gradient outlet:
T(:,Nx+2) = T(:,Nx+1)

Ny+2

Nx+2

Numerical computation of partial derivatives
of a function using matrices

∂ c
∂ x

≈
c i+1

n
−c i−1

n

2 Δ x

Where is a vector ?

Where is a matrix ?

∂
2 c

∂ x2 ≈
c i+1

n
−2 c i

n
+c i−1

n

Δ x2

c1 c2 c Nc i

Δ x

Consider CD2 method for estimation of partial
derivatives

Computers understand numeric data commonly
as scalars, vectors, or matrices

Dx=
1

2Δ x (
0 1 0 ⋯ −1

−1 0 1 0 ⋯

0 −1 0 1 ⋯

⋮ ⋮

1 0 ⋯ −1 0
)

N by N differentiation matrix: 1st derivative

Dxx=
1

Δ x2 (
−2 1 0 ⋯ 1
1 −2 1 0 ⋯

0 1 −2 1 ⋯

⋮ ⋮

1 0 ⋯ 1 −2
)

N by N differentiation matrix: 2nd derivative

Computers understand numeric data commonly
as scalars, vectors, or matrices

Dx=
1

2Δ x (
0 1 0 ⋯ −1

−1 0 1 0 ⋯

0 −1 0 1 ⋯

⋮ ⋮

1 0 ⋯ −1 0
)

N by N differentiation matrix: 1st derivative

Dxx=
1

Δ x2 (
−2 1 0 ⋯ 1
1 −2 1 0 ⋯

0 1 −2 1 ⋯

⋮ ⋮

1 0 ⋯ 1 −2
)

N by N differentiation matrix: 2nd derivative

Note: one typically has to carefully think about the boundary
conditions. Here, we have assumed periodic bc’s so that
“what flows out from left/right end returns from the right/left
end”.

We can now express the “derivative vectors” of
function c (stored in another vector) as follows

cx=D x c

Estimate 1st derivative

c=(
c1
c2
⋮
cN

)

Estimate 2nd derivative

cxx=Dxx c

where, assuming periodic boundary conditions, the following vectors are observed:

∂ c
∂ x

=
1
2Δ x (

c2−cN
c3−c1

⋮
c1−cN−1

) ∂
2 c

∂ x2
=
1

Δ x2 (
c2−2c1+ cN
c3−2 c2+ c1

⋮
c1−2cN+ cN−1

)

Practical implementation of CD2 finite difference
scheme in Matlab

%%
% Copying the text below to a Matlab file PlotDeriv.m
% enables to computing derivative of a f(x)=sin(x) using CD2 scheme
% using differentiation matrix
%%
clear *

N=20; L=2*pi; dx = L/N; % N points, domain length L
x = linspace(dx/2,L-dx/2, N); % coordinate points, linearly spaced dx/2,3dx/2, … , L-dx/2
f=sin(x); % test function f(x)=sin(x)

Dx = sparse(N,N); % differentiation matrix is a sparse matrix = most elements are zeros

for(i=2:(N-1))
Dx(i,i+1)=1; Dx(i,i-1)=-1; % fill the matrix but not boundary yet
end

Dx(1,N)=-1; Dx(1,2)=1; % left boundary periodic
Dx(N,N-1)=-1; Dx(N,1)=1; % right boundary periodic

Dx = Dx/(2*dx); % divide by 2*dx

DfdxCD2 = Dx*(f’); % calculate dfdx by CD2: note f’ transposes f, rewrite the ‘ in the editor
 % to ensure Matlab compatibility

figure(1), clf; plot(x, DfdxCD2,’ko-’) % plot picture

Differentiation matrices and practical implementation of finite
difference method (CD2+Euler) for convection-diffusion eqn. Final

assignment is a straightforward implementation of this but just
need the matrices in y-direction as well.

c i
n+1

=c i
n
−Δ t u

c i+1
n −c i−1

n

2Δ x
+Δ t α

ci+1
n −2c i

n+c i−1
n

Δ x2

∂c
∂ t

+u
∂ c
∂ x

=α
∂2c

∂ x2

Continuous equation:

Discretized equation by finite difference method (see: Lectures 1-2)

And, this transformed to a vector-matrix form where the vectors are N by 1 and the matrices
are N by N sparse matrices:

cn+1=cn−Δ t uD x cn+Δ t αDxx cn

It is straightforward to write this matrix-vector equation
in Matlab and a for-loop in time,
after the differentiation matrices have been
defined. See a few slides back.

Solution of linear systems of equations
Ax = b

It is a common situation in CFD where we can not directly
(“explicitly”) find the solution on the next timestep or when the

solution is steady state

T=(
T 1
T 2
T 3
⋮
TN

)

f (x)=
∂

2T
∂ x2

Consider 1d heat equation with source term (spatial heating/cooling) on RHS
using periodic boundary conditions. This is essentially the same problem that we need to
solve for pressure in incompressible flows, the Poisson equation.

f=DxxT
The problem can be transformed into the following matrix equation:

Dxx=
1

Δ x2 (
−2 1 0 ⋯ 1
1 −2 1 0 ⋯

0 1 −2 1 ⋯

⋮ ⋮

1 0 ⋯ 1 −2
)f =(

f 1
f 2
f 3
⋮
f N

)

Observations 1/2

T=(
T 1
T 2
T 3
⋮
TN

)

f (x)=
∂

2
(T+const .)

∂ x2 =
∂

2T
∂ x2

1) The solution is unique upto a constant because if T is a solution then also T+const.
is a solution

2) This means that we need to fix the solution in one point. We could for instance require
that T

1
= f

1
 which would allow modifying the matrix in way that allows solution of the problem.

Dxx
mod

=
1

Δ x2 (
Δ x2 0 0 ⋯ 0
1 −2 1 0 ⋯

0 1 −2 1 ⋯

⋮ ⋮

1 0 ⋯ 1 −2
)

Observations 2/2

3) Compare the two matrices

Dxx
mod

=
1

Δ x2 (
Δ x2 0 0 ⋯ 0
1 −2 1 0 ⋯

0 1 −2 1 ⋯

⋮ ⋮

1 0 ⋯ 1 −2
)Dxx=

1

Δ x2 (
−2 1 0 ⋯ 1
1 −2 1 0 ⋯

0 1 −2 1 ⋯

⋮ ⋮

1 0 ⋯ 1 −2
)

→ We see that in the original matrix the row sums are 0 i.e. -2+1+1=0 for each row. Such
aspect is typically a sign that Ax=b does not pose a unique solution.

→ We see that in the modified matrix the row sums are 0 except for row number 1 for which
the sum equals to 1. This is a typical positive indication that a matrix equation Ax=b will
have a solution.

Typical ways to solve matrix equation Ax=b

x=A−1b

1) Direct inversion of the matrix → done rather seldom in practice in CFD

2) LU-decomposition of the matrix into lower diagonal matrix L and upper diagonal matrix U
→ done every now and then in CFD

A=LU

x=A−1b

The system can be solved in two parts which are both easy to solve by back-substitution
(also called Thomas algorithm) in two steps

A=LU

x=A−1b

LUx=b

Ly=b→ y=... Ux= y→x=...

3) Gauss-Seidel method: iterate

4) Pre-conditioned conjugate gradient methods → common iterative method in practice

5) Multigrid methods → common iterative method in practice

LA xk+ 1=b−U A xk , where A=LA+U A

Implementation of boundary conditions
outlined

Let us again consider the heat equation in 1d

Dxx=
1

Δ x2 (
−2 1 0 ⋯ 1
1 −2 1 0 ⋯

0 1 −2 1 ⋯

⋮ ⋮

1 0 ⋯ 1 −2
)

T 0 T 1 T N +1T N
0=

∂
2T

∂ x2

x=0 x=L
Boundary conditions:

T (x=0)=T A and T (x=L)=T B

The BC’s can be implemented in various
Ways. Here one of them is discussed:

Assumption 1) the BC is indeed exactly
at x=0 and x=L i.e. it is not a solution point

Assumption 2) The differentiation matrix is
modified in the corners

Ghost
value

Ghost
value

0.5 (T 0+T1)=T A →T0=2 T A−T1

To enforce certain value exactly at x=0 we can enforce:

→ This leads to modification of matrices in the corners so that the desired value for T
0
is gained

Cont.

NOTE: Equally well, we could have implemented the zero-
gradient boundary condition type by requiring that the
solution is constant across the border (i.e. gradient must
be zero) by To = T1

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

