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MICROSCOPIC PHYSICS OF QUANTUM LIQUIDS

There are two ways to study quantum liquids:

(1) The fully microscopic treatment. This can be realized completely either by
numerical simulations of the many-body problem, or for some special ranges of
the material parameters analytically, for example, in the limit of weak interaction
between the particles.

(2) A phenomenological approach in terms of effective theories. The hier-
archy of the effective theories corresponds to the low-frequency, long-wavelength
dynamics of quantum liquids in different ranges of frequency. Examples of ef-
fective theories: Landau theory of the Fermi liquid; Landau—Khalatnikov two-
fluid hydrodynamics of superfluid *He; the theory of elasticity in solids; the
Landau—Lifshitz theory of ferro- and antiferromagnetism; the London theory of
superconductivity; the Leggett theory of spin dynamics in superfluid phases of
3He,; effective quantum electrodynamics arising in superfluid He-A; etc. The last
example indicates that the existing Standard Model of electroweak and strong
interactions, and the Einstein gravity too, are the phenomenological effective
theories of high-energy physics which describe its low-energy edge, while the
microscopic theory of the quantum vacuum is absent.

3.1 Theory of Everything in quantum liquids
3.1.1 Microscopic Hamiltonian

The microscopic Theory of Everything for quantum liquids and solids — ‘a set of
equations capable of describing all phenomena that have been observed’ (Laugh-
lin and Pines 2000) in these quantum systems — is extremely simple. On the
‘fundamental’ level appropriate for quantum liquids and solids, i.e. for all practi-
cal purposes, the *He or 3He atoms of these quantum systems can be considered
as structureless: the *He atoms are the structureless bosons and the 3He atoms
are the structureless fermions with spin 1/2. The simplest Theory of Everything
for a collection of a macroscopic number N of interacting *He or *He atoms is
contained in the non-relativistic many-body Hamiltonian
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acting on the many-body wave function ¥(ry,ra,...,r;,...,rj,...). Here m is

the bare mass of the atom; U(r; —r;) is the pair interaction of the bare atoms i
and j.
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The many-body physics can be described in the second quantized form, where
the Schrédinger many-body Hamiltonian (3.1) becomes the Hamiltonian of the
quantum field theory (Abrikosov et al. 1965):
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(3.2)
In *He, the bosonic quantum fields 4 (x) and 1 (x) are the creation and an-
nihilation operators of the *He atoms. In *He, v7(x) and v(x) are the corre-
sponding fermionic quantum fields and the spin indices must be added. Here
N = [dx ¢T(x)1(x) is the operator of the particle number (number of atoms);
w1 is the chemical potential — the Lagrange multiplier introduced to take into
account the conservation of the number of atoms. Note that the introduction of
creation and annihilation operators for helium atoms is the formal procedure:
it does not imply that we really can create atoms from the vacuum: this is cer-
tainly highly prohibited since the relevant energies in the liquid are of order 10
K, which is many orders of magnitude smaller than the GeV energy required to
create the atom-antiatom pair from the vacuum.

3.1.2 Particles and quasiparticles

In quantum liquids, the analog of the quantum vacuum — the ground state of the
quantum liquid — has a well-defined number of atoms. Existence of bare particles
(atoms) comprising the quantum vacuum of quantum liquids represents the main
difference from the relativistic quantum field theory (RQFT). In RQFT, particles
and antiparticles which can be created from the quantum vacuum are similar to
quasiparticles in quantum liquids. What is the analog of the bare particles —
‘atoms’ of the quantum vacuum of RQFT — is not clear today. At the moment
we simply do not know the structure of the vacuum, and whether it is possible
to describe it in terms of some discrete elements — bare particles — whose number
is conserved.

In the limit when the number N of bare particles in the vacuum is large,
one might expect that the difference between two quantum field theories, with
and without conservation of particle number, disappears completely. However,
this is not so. We shall see that the mere fact that there is a conservation law
for the number of ‘atoms’ of the vacuum leads to a definite conclusion on the
value of the relevant vacuum energy : it is exactly zero in equilibrium (see also
the recent paper by Klinkhamer and Volovik (2008)). Also, as we shall see below
in Chapter 29, the discreteness of the quantum vacuum can be revealed in the
mesoscopic Casimir effect.

3.1.3  Microscopic and effective symmetries

The Theory of Everything (3.2) has a very restricted number of symmetries:
(i) The Hamiltonian is invariant under translations and SO(3) rotations in 3D
space. (ii) There is a global U(1) 5 group originating from the conservation of the
number N of atoms: H is invariant under global gauge rotation 1(x) — e*“t)(x)
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with constant «. The particle number operator serves as the generator of the
gauge rotations: e "N yheioN = yeic, (iii) In ®He, the spin—orbit coupling is rel-
atively weak. If it is ignored, then H is also invariant under separate rotations of
spins, SO(3)s (later we shall see that the symmetry violating spin—orbit interac-
tion plays an important role in the physics of fermionic and bosonic zero modes
in all of the superfluid phases of *He). At low temperature the phase transition
to the superfluid or to the quantum crystal state occurs where some of these
symmetries are broken spontaneously.

In the 2He-A state all of the symmetries of the Hamiltonian, except for the
translational one, are broken. However, when the temperature and energy de-
crease further the symmetry becomes gradually enhanced in agreement with the
anti-Grand-Unification scenario (Froggatt and Nielsen 1991; Chadha and Nielsen
1983). At low energy the quantum liquid or solid is well described in terms of a
dilute system of quasiparticles. These are bosons (phonons) in “He and fermions
and bosons in *He, which move in the background of the effective gauge and/or
gravity fields simulated by the dynamics of the collective modes. In particular,
as we shall see below, phonons propagating in the inhomogeneous liquid are de-
scribed by the effective Lagrangian for the scalar field « in the presence of the
effective gravitational field:
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Here g"¥ is the effective acoustic metric provided by the inhomogeneity of the
liquid and by its flow (Unruh 1981, 1995; Stone 20005 and the review by Barcelo
et al 2005).

These quasiparticles serve as the elementary particles of the low-energy effec-
tive quantum field theory. They represent the analog of matter. The type of the
effective quantum field theory — the theory of interacting fermionic and bosonic
quantum fields — depends on the universality class emerging in the low-energy
limit. In normal Fermi liquids, the effective quantum field theory describing dy-
namics of fermion zero modes in the vicinity of the Fermi suface which interact
with the collective bosonic fields is the Landau theory of Fermi liquid. In super-
fluid 2He-A, which belongs to different universality class, the effective quantum
field theory contains chiral ‘relativistic’ fermions, while the collective bosonic
modes interact with these ‘elementary particles’ as gauge fields and gravity. All
these fields emerge together with the Lorentz and gauge invariances and with
elements of the general covariance from the fermionic Theory of Everything in
eqn (3.2). The vacuum of the Standard Model belong to the same universality
class, and the RQFT of the Standard Model is the corresponding effective theory.

The emergent phenomena do not depend much on the details of the Theory
of Everything (Laughlin and Pines 2000) — in our case on the details of the pair
potential U(x—y). Of course, the latter determines the universality class in which
the system finds itself at low energy. But once the universality class is established,
the physics remains robust to deformations of the pair potential. The details of
U(x —y) influence only the ‘fundamental’ parameters of the effective theory
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(‘speed of light’, ‘Planck’ energy cut-off, etc.) but not the general structure of the
theory. Within the effective theory the ‘fundamental’ parameters are considered
as phenomenological.

3.1.4 Fundamental constants of Theory of Everything

The original number of fundamental parameters of the microscopic Theory of
Everything is big: these are all the relevant Fourier components of the pair po-
tential U(r = |x —y|). However, one can properly approximate the shape of the
potential. Typically the Lennard-Jones potential U(r) = e ((ro/r)12 - (ro/r)6)
is used, which simulates the hard-core repulsion of two atoms at small distances
and their van der Waals attraction at large distances. This U(r) contains only
two parameters, the characteristic depth € of the potential well and the length
ro which characterizes both the hard core of the atom and the dimension of the
potential well.

Thus the microscopic Theory of Everything in a quantum liquid can be ex-
pressed in terms of four parameters: h, €y, ro and the mass of the atom m. These
‘fundamental constants’ of the Theory of Everything determine the ‘fundamen-
tal constants’ of the descending effective theory at lower energy. On the other
hand, we know that at least two of them, ey and 79, can be derived from the
more fundamental Theory of Everything — atomic physics — whose ‘fundamental
constants’ are h, electric charge e and the mass of the electron m. In turn, e
and m, are determined by the higher-energy Theory of Everything — the Stan-
dard Model etc. Such a hierarchy of ‘fundamental constants’ indicates that the
ultimate set of fundamental constants probably does not exist at all.

The Theory of Everything for liquid *He or “He does not contain a small
parameter: the dimensionless quantity, which can be constructed from the four
constants ro,/meg/h, appears to be of order unity for 3He and *He atoms. As
a result the quantum liquids 3He and *He are strongly correlated and strongly
interacting systems. The distance between atoms in equilibrium liquids is deter-
mined by the competition of the attraction and the repulsing zero-point oscil-
lations of atoms, and is thus also of order ry. Zero-point oscillations of atoms
prevent solidification: in equilibrium both systems are liquids. Solidification oc-
curs when rather mild external pressure is applied.

Since there is no small parameter, it is a rather difficult task to derive the
effective theory from first principles, though it is possible if one has enough com-
puter time and memory. That is why it is instructive to consider the microscopic
theory for some special model potentials U(r) which contain a small parameter,
but leads to the same universality class of effective theories in the low-energy
limit. This allows us to solve the problem completely or perturbatively. In the
case of the Bose-liquids the proper model is the Bogoliubov model (1947) of
weakly interacting Bose gas; for the superfluid phases of 3He it is the Bardeen—
Cooper—Schrieffer (BCS) model.

Such models are very useful, since they simultaneously cover the low-energy
edge of the effective theory and the Theory of Everything, i.e. high-energy ‘trans-



WEAKLY INTERACTING BOSE GAS 21

Planckian’ physics. In particular, this allows us to check the validity of different
regularization schemes elaborated within the effective theory.

3.2 Weakly interacting Bose gas
3.2.1 Model Hamiltonian

In the Bogoliubov theory of the weakly interacting Bose gas the pair potential in
eqn (3.2) is weak. As a result, in the vacuum state most particles are in the Bose—
Einstein condensate, i.e. in the state with momentum p = 0. The vacuum with
Bose condensate is characterized by the scalar order paramater — the non-zero
vacuum expectation value (vev) of the particle annihilation operator at p = 0:

(ap=0) = v/ Noe'® | <GL:0> = /Noe ™. (3.4)

Here Ny < N is the particle number in the Bose condensate, and ® is the phase
of the condensate. The vacuum state is not invariant under U(1)y global gauge
rotations, and thus the vacuum states are degenerate: vacua with different ® are
distinguishable but have the same energy. Further we choose a particular vacuum
state with @ = 0. Since the number of particles in the condensate is large, one
can treat operators ap—¢ and aLzO as classical fields, merely replacing them by
their vev in the Hamiltonian.

If there is no interaction between the particles (an ideal Bose gas), the vac-
uum is completely represented by the Bose condensate particles, Ng = N. The
interaction pushes some fraction of particles from the p = 0 state. If the interac-
tion is small, the fraction of the non-condensate particles in the vacuum is also
small, and they have small momenta p. As a result, only the zero Fourier compo-
nent of the pair potential is relevant, and the potential can be approximated by
a d-function, U(r) = Ud(r). The Theory of Everything in eqn (3.2) then acquires
the following form:
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We ignore quantum fluctuations of the operator ag considering it as a c-number:
Ny = agao = aoag = agag = apag. Note that the last two terms in eqn (3.7)
do not conserve particle number: this is the manifestation of the broken U(1)y
symmetry in the vacuum.

Minimization of the main part of the energy in eqn (3.5) over Ny gives
UNy/V = p and one obtains
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