
PHYS-E0463 Fusion Energy Technology Deadline Jan 25th
Groth Kiviniemi Chandra Mäenpää Exercise set 2 - Fusion concepts

General information

The exercise sessions will be held as blackboard sessions, where the participants will present
their solutions to the group. As such, the problems should be set up and solved before the
session. The focus of the exercises lies on analyzing and discussing the task at hand together
with the group: thus, a perfect solution is not required to be awarded points. A point will
be awarded for each question, and a person will be chosen to present their solution from the
pool. There are useful formulas at the bottom of this document!

Exercise 1.
Energy confinement times and ignition

A central figure of merit within the field of fusion technology is the fusion triple prod-
uct. The fusion triple product relates the fuel density, nDT , fuel temperature, T , and en-
ergy confinement time, τE, to successful, self-sustained fusion burn. The triple product for
deuterium-tritium fusion is

nDTTτE ≥ 1022 keV s m−3.

Calculate the required confinement times for ignition in the following confinement concepts:

(a) Magnetic confinement: a tokamak with fuel density n ∼ 1020 m−3 and temperature
T ∼ 10 keV. Compare the value to the one foreseen for ITER.

(b) Inertial confinement: a laser fusion device with n ∼ 1032 m−3 and fuel temperature
of T ∼ 10 keV. Compare the obtained value to the ratio of the fuel sound speed
(cs ∼ 105 m/s) to the fuel capsule radius (R ∼ 100 µm).

Solution 1.
(a) τE ∼ 10 s, which is close to the ITER reference value of 8 s.

(b) τ ∼ 10−11 s. The estimated inertial confinement time (ratio of fuel capsule radius to
ion sound speed) is about 10−9 s.

Exercise 2.
Power densities and wall power loads in different fusion reactors

Estimate the power densities and wall power loads in the following fusion reactors:

(a) Tokamak: A tokamak operating with a 50-50 D-T fuel mix with major radius R =
5.5 m and minor radius a = 1.8 m. Assume flat temperature and density profiles ( =
constant temperature and density) with nD = nT = 1020 m−3 and Te = Ti = 10 keV.
Use the low temperature approximation from the "Fusion principles" lecture notes to
determine the mean reaction rate.
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(b) Z-pinch: A Z-pinch with R = 10 cm operating with a 50-50 DT fuel mix. The fusion
reactions occur in a narrow rope with a diameter of 40 µm. The DT density in the
rope is nDT = 4.5× 1028 m−3. The burn-up of the fuel is 30% and the pulse rate, f , of
the device is 1 Hz. See figure Fig. 1 for illustration of the assumed geometry.
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This is the chamber wall.

Figure 1: An illustration of the assumed z-pinch geometry in exercise 2b).

Solution 2.
(a) The power density of the reactor is

Pf = nDnT 〈σv〉EDT ≈ 1.3× 1019 MeVm−3s−1 = 2.1 MWm−3,

where the low temperature approximation of the mean reaction rate has been used:
〈σv〉D−T ≈ 7.58× 10−23 m3s−1.

The wall power loads of the reactor are given by

qwall =
PfVtokamak
Atokamak

= Pf
·πa2 · 2πR
2πa · 2πR

= Pf
a

2
≈ 1.9 MWm−2

(b) We assume the pinch to be of infinite length, and the fusion reactions to occur in the
narrow rope in the center of the device. The power density is thus

Pf,rope =
nDT
2
EDTη · fpulse ≈ 1.19× 1029 MeV s−1 m−3 = 1.9× 1016 W m−3,

where the factor 1/2 comes from the fuel density considering both deuterium and
tritium particles, η is the burn-up and fpulse is the pulse frequency. The total power
produced per meter of the reactor is, thus,

Prope/l = Pf ∗ Arope = Pf · π
(
d

2

)2

≈ 23.9 MW/m.

The geometric properties, per meter of length, of the machine are

VZ−pinch/l =πR
2 ≈ 0.0314 m3/m

AZ−pinch/l =2πR ≈ 0.628 m2/m
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The total Z-pinch power density and wall power flux thus become

Pf,Z−pinch =
Prope/l

VZ−pinch/l
≈ 761 MW m−3

qf,Z−pinch wall =
Prope/l

AZ−pinch/l
≈ 38 MW m−2

If we assume the Z-pinch to be of finite length, we will have to consider the area of the
cylinder ends, thus the wall power flux becomes variable, increasing with increasing
machine length, with the above wall load as its maximum. If we e.g. use a 10 cm long
machine the wall power load becomes

qwall,10 cm =
Pf,Z−pinchVZ−pinch,10 cm

Awall,10 cm

=
Pf,Z−pinch0.1 mπR2

2πR · 0.1 m + 2× 2πR2
≈ 19 MW m−2

Exercise 3.
Sun and stars

In the sun, energy is released primarily through the following chain of reactions:

p + p −−→ D+ e+ + νe + 1.44MeV

D + p −−→ 3He + γ + 5.49MeV

3He + 3He −−→ 4He + 2p + γ + 12.89MeV

(a) Show that the energy released per proton fused in this reaction chain is approximately
6.68MeV. What happens to the positrons and the neutrinos?

(b) Find reasonable estimates for the power output and mass of the sun and use them to
calculate the reaction rate per proton per second in the sun. Assume that the power is
produced in the core, which contains 10% of the total mass. How long does the average
proton have to wait before it fuses in the sun?

Solution 3.
(a) We can find the total energy released by first multiplying the second reaction equation

by two and adding it to the third equation:

2 · (D + p −−→ 3He + γ + 5.49MeV)
3He + 3He −−→ 4He + 2p + γ + 12.89MeV

2D + 2p + 2 3He −−→ 2 3He + 4He + 2p + 3 γ + 23.87MeV

or, after cancelling terms,
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2D + −−→ 4He + 3 γ + 23.87MeV

Next, multiply and add the first equation to the above one:

2 · (p + p −−→ D+ e+ + νe + 1.44MeV)

2D + −−→ 4He + 3 γ + 23.87MeV

2D + 4p −−→ 2D + 2 e+ + 2 νe +
4He + 3 γ + 26.75MeV

Cancelling terms gives the total reaction:

4 p −−→ 4He + 2 e+ + 2 νe + 3 γ + 26.75MeV

The energy released per proton is thus 26.75MeV/4 = 6.6875MeV. The two positrons
are annihilated in collisions with electrons in the core. Each annihilation event releases
2 · 0.511MeV = 1.02MeV of energy, which has already been accounted for in the
reaction equations. The neutrinos most likely escape the sun without depositing their
energy there. In part b, we have neglected any complication arising from the variable
amount of energy per each reaction that is lost to the neutrinos (on average 0.26MeV
per neutrino).

(b) The power output of the sun is approximately PS = 3.8× 1026W and its mass is
roughlyMS = 1.989× 1030 kg. The energy release per proton fused is Ep = 6.68× 106 eV·
1.602× 10−19 J eV−1 = 1.07× 10−12 J. We can now calculate the number of protons in
the core:

Np,c =
MS

10 ·mp

The number of reactions per second (f) per proton in the core is

f

Np,c

=
PS

EpNp,c

=
10 · PSmp

EpMS

Plugging in values

10 · PSmp

EpMS

=
10 · 3.8× 1026W · 1.67× 10−27 kg

1.07× 10−12 J · 1.989× 1030 kg
= 2.98× 10−18 s−1

The estimated average wait time is thus 1/2.98× 10−18 s−1 = 3.35× 1017 s, or approxi-
mately 10 billion years (the final figure could also be lower by a factor of two, depending
on the way you estimated it).
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Exercise 4.
Inertial confinement

In a laser fusion device, a spherical symmetric fusion target is compressed to 1000 times
the initial density: ρ = 1000ρ0, or R = 0.1R0. The initial density of the fuel pellet, consisting
of cooled, solid D-T, is ρ0 = 0.23 g/cm3 and the radius is R0 = 0.2 cm.

(a) What is the minimum energy of the laser pulse Emin required, if a temperature of 5
keV is required for the ignition? Assume that the fuel compresses adiabatically, i.e.
pV γ = const in the process, with γ = 5/3.

(b) What is the fusion gain factor (the ratio of fusion energy released to the energy needed)?
The burn-up B, the fraction of the fuel that fuses, is needed, and can be calculated
according to:

B =
ρR

ρR + 6 g
cm2

,

where ρ is the mass density of the fuel.

R

0.1R

T1,V1,p1

T2,V2,p2

Figure 2: Illustration of the compression in laser fusion.

Solution 4.
(a) Assuming adiabatic compression, for which

pV γ = constant,

where p is the pressure, V the volume, and γ the ratio of the specific heats:

γ =
CP
CV

=
f + 2

f
,
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where f is the numbers of degrees of freedom. We approximate the deuterium-tritium
mixture as a monatomic gas, where the degrees of freedom are the spatial directions
in three-dimensional space, f = 3→ γ = 5/3.

The energy required to compress the monatomic gas adiabatically is found by

W =

∫ V2

V1

pdV =

∫ V2

V1

p2V
γ
2

V γ
dV = p2V

γ
2

V 1−γ
2 − V 1−γ

1

1− γ

=
p2V2
1− γ

(
1− V γ−1

2

V γ−1
1

)
=
N2T2
1− γ

(
1− V γ−1

2

V γ−1
1

)
.

The particle density in the initial state is n0 ≈ ρ0/(2.5 · mp). Therefore, the total
amount of particles in the fuel pellet is N0 = N2 = Vpellet, 0 ·n0 =

4
3
πr3n0 = 1.843 ·1021.

Therefore, the energy needed to adiabatically compress the fuel to these conditions is
about 2.19 MJ.

(b) The mass density times the radius of the fuel is ρR = 1000ρ00.1R0 = 4.6 g/cm2,
yielding a burn-up of B ≈ 0.43. Therefore, the fusion energy production can be
calculated: WF = 0.5nEDTV B = 0.5N2EDTB ≈ 1.12 GJ, resulting in a gain factor of
about 511.
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Constants:
1 eV = 1.602 × 10−19 J
mp = 1.673 × 10−27 kg
mn = 1.675 × 10−27 kg
NA = 6.022 × 1023 mol−1

kB = 1.381 × 10−23 m2 kg s−2 K−1

Power equations assuming pure hydrogenic (Z=1) plasma:
Fusion power density: Pf = αninj〈σv〉Ef ,

where Ef represents the produced energy per a fusion reaction, ni and nj are the fuel isotope
densities, ne the electron density, TS the surface temperature of the black body, and A the
surface area of the black body. The α parameter in the fusion power density equation is 1
for D-T fusion, and 1/2 for D-D fusion. This parameter arises due to the fact that when
calculating the fusion cross-section integral (〈σv〉) for like particle collisions (D-D), every
collision is counted twice. This should not be confused with the 1/4-factor that arises in the
D-T fusion cross-section with 50-50 % fuel mixture due to nD = nT = ne/2 → nD × nT =
(1/4)× ne. More information can be found in e.g. [1].

References:
[1] J. P. Freidberg, Plasma Physics and Fusion Energy, Cambridge University Press, 2007,
p.44
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