
ELEC-C8201 Control and Automation

Lecture 3: Poles and zeros, system speed, stability 
and oscillations



System behavior 

 The most important feature of the system is stability. Other 
features include:
 Speed
 Oscillations and their nature, resonance
 Minimum phase/non minimum phase, start transients
 Sensitivity and robustness, Disturbance rejection
 Possible integral or derivative behavior
 Degree of TF (strictly proper, proper, not proper)

 In previous lectures, the behavior of the system was
determined accurately from the responses – which required
the inverse Laplace transform. This lecture focuses on
behavioral analysis based on model properties without the
analytical calculation of the response function.



System Poles and Zeros 
 The transfer function consists of the numerator and denominator 

polynomial


 The denominator polynomial is the characteristic polynomial of the 
system

 Polynomial can be written as a product of its roots:

 The values of s for which the numerator is zero are the zeros of 
the system and those for which the denominator is zero are the 
poles of the system.
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Characteristic polynomial: Q(s)
Characteristic equation: Q(s)=0



System Poles and Zeros 

 In the polar representation, the poles and zeros of the 
system are plotted graphically in a complex plane:

 Complex roots always occur in complex conjugate pairs: si = a ± bi => The 
complex poles are always symmetric wrt the real axis. 
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Stability 

 Several different definitions have been developed for 
stability. E.g.
 Stability of single solution (nonlinear and/or time varying systems)

 System stability (global feature of linear systems)

 Global stability vs. local stability (non-linear systems)

 Lyapunov stability

 Asymptotic stability

 BIBO-stability (Bounded Input - Bounded Output)

 Marginal stability

 This course covers only the stability of linear systems, in 
which case stability is a global feature of the system –
Stability does not depend on the input quantities or the 
operational region.



System

Stable s. Unstable s.

Asymptotically stable s. Marginally stable s.

System stability 



Stability 

 The non-linear system stability may depend on the operating range and 
the input quantities.  Consider, for example, rocks on a mountainside.
 The microdermabrasion has one stable equilibrium point (Valley, 3) and two 

unstable (peaks, 2 and 5)

 At a stable point of operation, the response remains stable, but when stones 
are pushed with sufficiently large forces, the anvil may become unstable (the 
stone may fall to the left of point 2 or to the right of point 5.

 A stone in an unstable area may, with a
suitable input, end up in a stable area.
For example, from point 1 you can get
past the peak in a stable valley, but from
Point 6 it is much harder to end up with a
stable solution, because the stone
collects so much kinetic energy that it
easily slips through a stable valley into a
new unstable area.
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Lyapunov Stability 

 State space equation 

 The mode x (t) behavior in the future depends on two terms: the free 
response(initial values) and the forced response.

 The Lyapunov stability is the study of stability of the free response. In 
simple terms, it is possible to deviate from the initial state a little and see 
what happens when no external u controls are used.  If the linear system 
is stable for one initial value, it is also stable for all other arbitrary initial 
values. 


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BIBO-Stability 

 In the BIBO stability, on the other hand, the stability of the input / output 
behavior is studied and is closely related to the second term of the 
above-described state presentation solution. The system is BIBO 
(bounded input - bounded output) if any limited control u always gives a 
limited response y.

 For example, the integrator and the ideal pendulum (harmonic oscillator) 
are marginally stable (generally stable) and Lyapunov stable, but not 
asymptotically stable and not BIBO-stable.

 Inverted pendulum and rocket in space are unstable according to all 
stability criteria.

 The ideal mixer (low pass filter) and the mass block on the spring and 
damper are stable according to all the stability criteria outlined above.

 Asymptotic and marginal stability can be investigated by a linear system, 
e.g. impulse response behaviour.



Example: 

 Harmonic oscillator (Linear approximation)

 With the blue excitation, the pendulum gets into 
resonance and becomes unstable => the response 
due to the initial values is stable, but there is a 
limited excitation (blue signal) with which the 
response becomes unlimited.

 The linearized pendulum is a Lyapunov stable but 
not BIBO stable
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Impulse response and stability 

 The impulse response, i.e. the weighting function, of a 
system that is strictly proper (strictly proper: numerator 
lower-order than denominator) is the inverse Laplace 
transformation of the transfer function.
 The transfer function can be transformed by a fractional break-up to a sum of 

fractions (assuming that all roots are real and simple at first)

.

 Inverse Laplace transformation:

 If all the denominator polynomial roots are negative, then as time approaches 
infinity the response approaches zero – if even one root is positive, then the 
corresponding sum term approaches infinity.  When one sum term 
approaches infinity, the whole sum approaches infinite.
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Impulse response and stability 

 If there are complex roots among the roots, then they can be used to expand 
the second-degree denominator:

 Inverse transform:

 If the real parts of the denominator polynomial are negative, then as time 
approaches infinity the response approaches zero. If there is even one 
positive real part, then the response approaches infinite. 

 Let's look at the multiple roots.  Multiple (Q-fold) roots in a fractional-
developed form: 

 Inverse response:
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Impulse response and stability 

 If the polynomial-multiple root of the denominator is negative, then as time 
approaches infinity, the response to all terms approaches zero. If positive, 
then response approaches infinity. 

 Multiple complex roots provide a response of the form:

 These terms approach zero as the time goes to infinity, if the real part of a 
multiple complex root is negative. If the real part is positive, then the terms 
approach infinity.

 In summary, an impulse response approaches zero as the time 
approaches infinity only if the real part of each denominator 
polynomial root is negative.  This is the criterion of asymptotic 
stability.  If the real part of even one root is positive, the response 
approaches infinity as the time approaches infinity and the system is 
unstable.
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Marginal stability 

 If all the poles of the system are on the left half-plane of the complex 
plane, then the system is asymptotically stable and if one or more of 
the poles is on the right half-plane, then the system is unstable - what 
if the system has no poles on the right half-plane but on the border, 
i.e. on the imaginary axis – then what is the impulse response? 

Single pole Double pole Triple Pole



Marginal stability 

 If the system has single poles on the imaginary axis and no poles on 
the right side of the plane, it is marginally stable (stable but not 
asymptotically stable).

 If the system has multiple poles on the imaginary axis, it is unstable 
according to all stability criteria.

 If the system has one pole on the imaginary axis (at the origin of the 
complex plane), it is marginally stable,  not asymptotically stable nor 
BIBO-stable.



Stability 

 The system is asymptotically stable, if all its poles are on the left side of a 
complex plane.

 The system is unstable if it has one or more poles at the right side of a 
complex plane or has multiple poles on the Imaginary axis

 The system is marginally stable if it has one or more simple poles on the 
imaginary axis and not a single pole on the right half plane.

 Asymptotic stability implies BIBO stability.  BIBO stability implies asymptotic
stability, if the system is both reachable and observable (these concepts are
discussed later).
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Oscillations
 For Laplace conversion pairs, it is known that if the transfer function has 

complex roots in the denominator, then the inverse Laplace transformation 
gives sine and cosine functions.  That means that the response oscillates.

 Just as in the case of stability, if one part of the term oscillates, the whole 
system oscillates.

 The system response does not oscillate if the poles are on the real axis.  The 
response oscillates if even one polar pair is truly complex (not located on the 
real axis).
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Speed 

 The distance from the imaginary axis illustrates the exponential behavior (the 
farther from the imaginary axis the faster the system reaches its final value 
or escapes to infinity).

 The distance from the real axis is illustrated by the frequency of vibration (the 
greater the distance from the real axis, the greater is the frequency).

 The system is faster, the farther its poles are from the origin
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Damping Ratio of oscillation

 The damping ratio of the system illustrates the oscillation 
damping capability.

 The damping ratio is calculated from the cosine of the angle 
between the complex pole and the negative real axis – this only 
applies when the angle exists – that is, a genuinely complex 
pole.

 If the damping ratio is 1, the system is critically damped (no 
oscillation).

 If the damping ratio is between 1 and 0, the system is 
underdamped(a genuinely complex polar pair on the left side).

 If the damping ratio is zero, the system is a harmonic oscillator 
(poles on the imaginary axis).

 If the damping ratio is negative, the system is unstable (poles on 
the right half plane).
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Example: damping ratio and responses 

 Examining three different processes

 All have the same damping ratio, but 
different distance from the origin.

 Plotting the pole zero map in Matlab:
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Example: damping ratio and responses 

 The response:

 The system has different speeds, but 
the damping of oscillations in each 
system is the same .

 If each impulse response were scaled 
in time, the responses would be 
identical.

impulse(sys1)
impulse(sys2)
impulse(sys3)



Dominant poles

 Consider the system:

 The step response is

 The farther the pole is from the imaginary axis, the lower is its coefficient in 
the response expression.

 The poles and pole pairs that dominate the stable behavior are the ones 
closest to the Imaginary axis – they are the dominant poles.   The same is 
true for zeros and zero pairs.

 However, unstable behavior is always dominant.
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Zeros

 If the poles affect stability, oscillation and speed, then what do the zeros do?

 Take an example: a process with two stable poles (points-2 and-3) and one 
zero.

 Calculating step response:

 Zeros affect the numerators of different factors.  Let us test different zero 
values and examine how the step response changes. 
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Zeros

 The zeros affect the initial 
behavior of the responses.

 If the system has one or 
more zeros on the right side 
of the complex plane, the 
system is  non-minimum 
phase and, conversely, if all 
its zeros are on the left side 
(and there is no delay), then 
it is minimum-phase.

Zeros in right half plane

Zeros in left half plane

No zeros


