
PHYS-E0463 Fusion Energy Technology Deadline Feb 1st
Groth Kiviniemi Chandra Mäenpää Exercise set 3 - Tokamaks 1

General information

The exercise sessions will be held as blackboard sessions, where the participants will present
their solutions to the group. As such, the problems should be set up and solved before the
session. The focus of the exercises lies on analyzing and discussing the task at hand together
with the group: thus, a perfect solution is not required to be awarded points. A point will
be awarded for each question, and a person will be chosen to present their solution from the
pool.

Exercise 1.
Magnetic and electric fields inside a tokamak

(a) The toroidal field in a tokamak is induced by running a steady current Itc in each of
the Ntc toroidal coils. Use Ampere’s law to calculate how the strength of the toroidal
magnetic field inside a torus varies as a function of s, the distance from the symmetry
axis of the torus. What is the field strength outside of the toroidal coils? Assume that
the toroidal coils are very close together.

(b) The plasma current in a tokamak is driven inductively by running a time varying
current Ics(t) in the central solenoid. Use Faraday’s law to calculate the induced
toroidal electric field as a function of distance from the symmetry axis of the torus,
assuming that the central solenoid consists of Ncs coils and the current in each varies
as ∂I(t)

∂t
. Assume that the solenoid is very long.

Solution 1.
(a) It is assumed that the magnetic field is purely toroidal (Fig. 1). For a detailed proof of

this fact, see "Introduction to Electrodynamics", Griffiths, pp. 240-241, 4th edition.
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Figure 1: Current running in the toroidal field coils and the toroidal magnetic field in a
tokamak. Figure credit J. Hedberg, 2018.

Ampere’s law in integral form reads

˛
B · dl = µ0Ienc, (1)

where Ienc inside an Amperian loop (the path around which the integration is per-
formed). If we draw the Amperian loop inside the toroidal coils (Fig. 2), the enclosed
current is the number of coils times the current running in each coil, Ienc = NtcItc.

Figure 2: Amperian loop (in orange) inside the toroidal field coils. Figure credit J. Hedberg,
2018.

An Amperian loop at a distance s from the symmetry axis gives

B · 2πs = µ0NtcItc, (2)

where we have used the fact that B is a constant along the path of integration and can
be taken outside the integral. Thus, the magnetic field inside the toroidal coils is

roni.maenpaa@aalto.fi, revision March 13, 2023 2 of 10



B =
µ0NtcItc
2πs

, (3)

Drawing the Amperian loop outside the toroidal field coils results in net zero enclosed
current. Therefore, the field outside of the coils is zero.

(b) The magnetic field inside an infinitely long solenoid is given by:

B = µ0nI ẑ, (4)

where ẑ is a unit vector pointing along the symmetry axis of the solenoid in a direction
given by the right hand rule. Outside the solenoid the magnetic field is zero. For a
derivation, see "Introduction to Electrodynamics", Griffiths, pp. 237-239, 4th edition.
In our exercise, n = Ncs/L is the number of coils per units length (L is the length of
the central solenoid). The magnetic field varies as

∂B

∂t
=
µ0Ncs

L

∂I

∂t
ẑ. (5)

Faraday’s law states that

˛
E · dl = −

ˆ
∂B

∂t
· da , (6)

where the LHS integral is performed around an Amperian loop. The RHS integral is
performed over the area enclosed inside the Amperian loop. The Amperian loop is set
to be a circle of radius s around the symmetry axis of the torus. In this case, the only
magnetic flux enclosed within the Amperian loop is that inside the solenoid (of radius
a). Since E is constant along the path of integration, and B is spatially constant,
E and B can be taken outside of their respective integrals, giving

E · 2πs = −µ0Ncs

L

∂I

∂t
· πa2, (7)

which simplifies to

E = −µ0
a2Ncs

2sL

∂I

∂t
. (8)

Exercise 2.
Plasma confinement in tokamaks

In order to understand the plasma confinement in tokamaks, one must consider the loss-
and transport phenomenon of heat and particles in the plasma. Classical and neoclassical
predictions for radial transport in tokamaks will be investigated. These theoretical findings
will be compared to experimentally observed values. Despite the many calculations and the
platitude of information, the mathematics are straightforward, so do not lose hope.

roni.maenpaa@aalto.fi, revision March 13, 2023 3 of 10



(a) The experimentally observed confinement time in tokamaks is τE ∼ 1 s, while the minor
radii in reactor scale tokamaks are approximately a ∼ 1 m. Based on these ballpark
values, estimate the radial transport (diffusion) coefficient for tokamaks, assuming
D ∼ r2/τ .

(b) Using the classical concept of collisional diffusion, the diffusion coefficient can be ex-
pressed as D ∼ (step size)2 × (collisionfrequency). Thus, the classical estimate for the
radial diffusion coefficient is given by

Dclassic ∼ (rL,e)
2νei,

where rL,e is the electron gyroradius and νei is the electron-ion collision frequency. The
classical collisional thermal conductivity coefficients are

χs,classic ∼ (rL,s)
2νss

where the subscript s refers to electrons and ions (s ∈ {i, e}), rL,s is the ion/electron
gyro radius, while νss are the ion-ion/electron-electron self-collision frequencies. Now,
calculate the resulting values for Dclassic, χi,classic, and χe,classic assuming νei ∼ 4.6 ×
103 s−1 ∼ νee, νii ∼ (me/mi)

1/2νei, Te = Ti ∼ 5 keV, and B0 ∼ 5 T.

(c) Due to the geometry of the tokamak, the toroidal field coils are denser towards the
axis of symmetry, resulting in a stronger magnetic field closer to the axis of symmetry.
Thus, the side of the plasma close to the axis of symmetry is referred to as the high
field side (HFS), and the outer plasma as the low field side (LFS). This inhomogeneity
in the toroidal magnetic field further enhances the transport in the device, due to cross-
field drifts. These drifts effectively increase the diffusion step size, and the resulting
transport, from the classical step size, and the resulting transport is referred to as
neoclassical transport.

The radial gradient in the magnetic field also results in a phenomenon called particle
trapping, in which a fraction of the particles are reflected before reaching the HFS
plasma. Most of these trapped particles complete banana shaped orbits and are, nat-
urally, called banana trapped particles, while the non-trapped particles are referred to
as passing particles. Figure 3 should help, but watching an animation is even better,
e.g. https://www.youtube.com/watch?v=XUhNium3VEo.

Calculate the diffusion coefficient estimates for both trapped and passing particles,
using the neoclassical transport coefficient approximation for passing particles:

Dp
neoclassic ∼ 4q2Dclassic

χps,neoclassic ∼ q2χs,classic

where q is the safety factor, a quantity related to the windedness of the magnetic field.
The neoclassical transport coefficient for trapped particles can then be estimated as

Dt
neoclassic ∼ 2.2q2(R0/r)

3/2Dclassic

χte,neoclassic ∼ 0.89q2(R0/r)
3/2χe,classic

χti,neoclassic ∼ 0.68q2(R0/r)
3/2χi,classic
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Calculate the neoclassical estimates for the radial transport coefficients assuming R0 ∼
3 m, r ∼ 1 m, and q ∼ 3.

(d) What conclusions can you make regarding classical and neoclassical collisional diffusion
with regards the estimated cross-field transport calculated in a)?

Figure 3: Illustration of trapped particle orbits in a tokamak. The phenomenon is not limited
just to fusion devices but occurs also in e.g. Earth’s magnetosphere.

Solution 2.
(a) Energy flux through the plasma core boundary of a toroidal configuration can be

estimated from the confinement time τE, the energy in the plasma W , and the plasma
surface area A:

J =
W

AτE
=

3kBTneV

Aτ
=

3kBTne2πR · πr2

2πR · 2πrτ
=

3kBTne · r
2τ

.

Fick’s law relates the the energy flux to the diffusion coefficient, assuming constant J :

J = D∇W
V

=
3kBTne

r
=

3kBTne · r
2τ

→ D =
r2

2τE
∼ r2

τE

giving the approximation

Dclassical ≈ 1 m2s−1

(b) The Larmor radius is the radius of the circular path of motion a charged particle in
a magnetic field follows. By equating the centripetal acceleration of a particle j to
Lorentz force:

mj
v2⊥
rL

= qv⊥B → rL =
mjv⊥
|q|B

,
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where the velocity can be calculated by assuming thermal particles, i.e. the particles
have thermal velocity

v ≈
√

2T

m
.

Thus

rL,e =

√
2Teme

eB
≈ 48 µm

rL,i =

√
2Timi

eB
≈ 2 mm ≈ mi

me

rL,e,

yielding

Dclassic ∼ (rL,e)
2νei ≈ 1.2× 10−5 m2s−1

χi,classic ∼ (rL,i)
2νii ≈ 4.3× 10−4 m2s−1

χe,classic ∼ (rL,e)
2νee ≈ 1.2× 10−5 m2s−1

The classical diffusion/thermal conduction coefficients are 3 to 5 orders of magnitude
smaller than the experimental estimate, indicating some other mechanism must be
driving the cross-field transport in the tokamak.

(c) The resulting neoclassical collisional diffusion/thermal conduction coefficients for pass-
ing particles are:

Dneo-classic, passing ∼ 4q2Dclassic ∼ 3.6× 10−4 m2/s

χi, neo-classic, passing ∼ q2χi, classic ∼ 3.9× 10−3 m2/s

χe, neo-classic, passing ∼ q2χe, classic ∼ 1.1× 10−4 m2/s

The coefficients for trapped particles are:

Dneo-classic, trapped ∼ 2.2q2(R0/r)
3/2Dclassic ∼ 1.0× 10−3 m2/s

χi, neo-classic, trapped ∼ 0.68q2(R0/r)
3/2χi, classic ∼ 1.3× 10−2 m2/s

χe, neo-classic, trapped ∼ 0.89q2(R0/r)
3/2χe, classic ∼ 5× 10−4 m2/s

Therefore, it is generally found that for the classical estimates χe < D < χi. Further-
more, it is observed that Dclassic < Dpassing < Dtrapped.
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(a) Passing particles orbit
(b) Trapped particles orbits

(d) Even if the neoclassical transport is included, the experimental transport exceeds the
calculated one by a factor of 100. The experimentally observed cross-field transport is
driven by the micro turbulence of the plasma and cannot be explained by the simple
classical collisional model presented here.

Exercise 3.
Trapped particles

Consider a particle starting at the outer mid-plane (LFS) of the poloidal cross-section of
the torus with velocity v0 = v‖,0b+v⊥,0, where ‖ stands for parallel and ⊥ for perpendicular
relative to the magnetic field direction b. The kinetic energy of the particle can similarly be
divided into perpendicular and parallel components. Ref. [1] might prove helpful in these
calculations.

(a) Calculate the particle trapping condition for the pitch
(
v‖,0
v0

<
√

1− Bmin

Bmax

)
. Consider

the extreme cases of the particle being located at at the LFS (minimum B) and bounc-
ing HFS (maximum B), and use the conservation of energy and magnetic moment(
µ =

mv2⊥
2B

)
and the fact that the parallel velocity is momentarily zero at the bounce.

(b) Show that this condition is equivalent to the one given in the lecture slides
(
v‖,0
v0

<
√

2 r
R0

)
when assuming R0 >> r and B(x) = B0R0

R0+x
with −r ≤ x ≤ r. B0 is the magnetic field

at the magnetic axis (in the middle of the cross section of the torus).

(c) Assuming Maxwellian velocity distribution, integrate over the trapped cone in the
velocity space in spherical coordinates to obtain the fraction of trapped particles, i.e.
calculate

ft =
1

n

ˆ π−θc

θc

sinθdθ

ˆ 2π

0

dφ

ˆ ∞
0

FM(v)v
2dv,
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where θ corresponds to cos θ =
v‖,0
v0

and θc to the boundary between trapped and
passing particles. Utilising the calculations from b), the answer should be of the form
ft =

√
2r/R0. What does this say about the balance between trapped and passing

particles in a tokamak, i.e. where are the trapped particles most likely to dominate?

Solution 3.
(a) On the LFS the magnetic field is at its minimum, Bmin, and the particle velocity is

v20 = v2⊥0+v
2
‖0, and similarly on the HFS Bmax and v2 = v2⊥+v

2
‖. Using the conservation

of energy E = 1
2
mv20 = 1

2
mv2 ↔ v20 = v2. Further, considering the conservation of

magnetic moment
(
µ =

mv2⊥
2B

)
:

mv2⊥
2Bmax

=
mv2⊥0
2Bmin

→ v2⊥
Bmax

=
v2⊥0
Bmin

→
v2 − v2‖
Bmax

=
v20 − v2‖0
Bmin

=
v20 − v2‖
Bmax

→ v2‖ = v20 −
Bmax

Bmin

(
v20 − v2‖0

)

The trapping condition states that the parallel velocity reaches zero at the HFS:

→ v20 −
Bmax

Bmin

(
v20 − v2‖0

)
< 0

→
v‖0
v0

<

√
1− Bmin

Bmax

(b) The magnetic field has an 1/R dependence:

→ Bmin = B0
R0

R0 + r
, Bmax = B0

R0

R0 − r
↔

v‖0
v0

<

√
1− R0 − r

R0 + r
≈
√

2
r

R0

since

1− R0 − r
R0 + r

=
R0 − r
R0 + r

− R0 − r
R0 + r

=
2r

R0 + r
≈ 2r

R0 + r
, since R0 >> r.
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Figure 5: Illustration of the loss cone in the velocity space [J.P. Freidberg, Plasma Physics
and Fusion Energy, Cambridge University Press, 2007].

(c) The trapped fraction is obtained by integrating over the trapped portion of the distri-
bution function. Assuming a Maxwellian velocity distribution normalized to integrate
to 1, this gives

f =

ˆ π−θc

θc

sinθdθ
ˆ 2π

0

dφ

ˆ ∞
0

FM(v)v2dv

=

ˆ π−θc

θc

sinθdθ
ˆ 2π

0

dφ

ˆ ∞
0

( m

2πT

)3/2
e−

mv2

2T v2dv

=

ˆ π−θc

θc

sinθdθ
ˆ 2π

0

dφ

ˆ ∞
0

1

π3/2
e−x

2

x2dx

=

ˆ π−θc

θc

sinθdθ
ˆ ∞
0

2π

π3/2
e−x

2

x2dx

=

ˆ π−θc

θc

sinθdθ
ˆ ∞
0

2√
π
e−x

2

x2dx =
1

2

ˆ π−θc

θc

sinθdθ

= (−cos(π − θc) + cos(θc))
1

2
= cosθc =

√
2
r

R0

,

where integration by parts and the Gaussian integral has been used for the integration
w.r.t. x. Assuming an example reactor of R0 = 3 and r = 1 gives f ∼ 80 %. Increasing
the R0 to 5 m leads to f ∼ 60 %.

Exercise 4.
Maximum allowable current density in a tokamak

The helicity of the magnetic field in a tokamak is typically described with the safety factor,
q, which is defined as the number of full toroidal loops that the magnetic field completes
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during a single poloidal revolution. The name stems from the fact that with certain q values,
the plasma becomes susceptible to magnetohydrodynamic (MHD) instabilities, which may
eventually lead to disruption and shut down of the reactor.

Find the maximum allowable current density in the tokamak, such that the minimum
edge safety factor, in this case q > 1, is still within operational boundaries imposed by
plasma instabilities. Assume the toroidal magnetic field to be BT ∼ 7 T, and the major
radius to be R ∼ 7 m. Assume a circular symmetric poloidal cross-section, large aspect-ratio
tokamak, such that the safety factor can be approximated by the equation:

q =
rBT

RBθ

,

where r is the local minor radius of the tokamak, BT is the total toroidal field magnitude,
R is the major radius of the tokamak, and Bθ is the total magnitude of the poloidal field.
The poloidal field is induced by a current running through the plasma, and so depends on
the current density.

Solution 4.
The poloidal magnetic field can be calculated using Ampere’s Law:

Bθ =
µ0Jpπr

2

2πr
.

Using the above expression and the safety factor approximation

q =
2Bφ

Rµ0Jp
↔ Jp =

2Bφ

Rµ0q
.

Since we are interested in the maximum current density allowable for q > 1 this equation
gives, Jp < 1.59 MA m−2. If the plasma cross-section is assumed to be about π22 m2 ∼
12.56 m2, the maximum total current would be approximately 20 MA.

[1] J. P. Freidberg, Plasma Physics and Fusion Energy, Cambridge University Press, 2007,
p.484-485
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