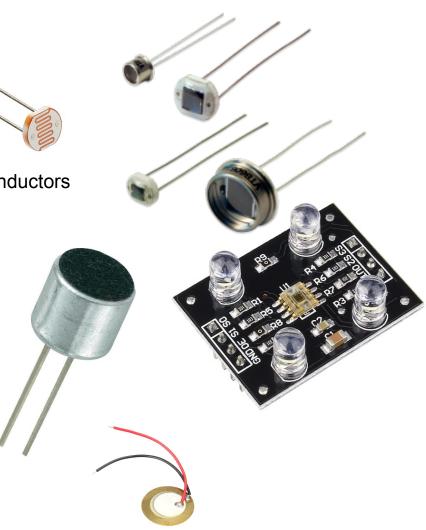
Sensors & Buses

ELEC-D0301 Protopaja

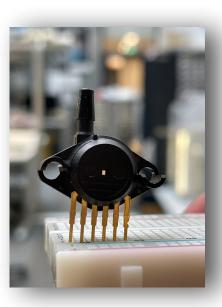
Aleksi Zubkovski (Based on slides by Juha Biström & Mikko Simenius)

12.6.2023


Understand how sensors "sense" Understand limitations & accuracy of sensors Sensor integration Buses & protocols

Sensors

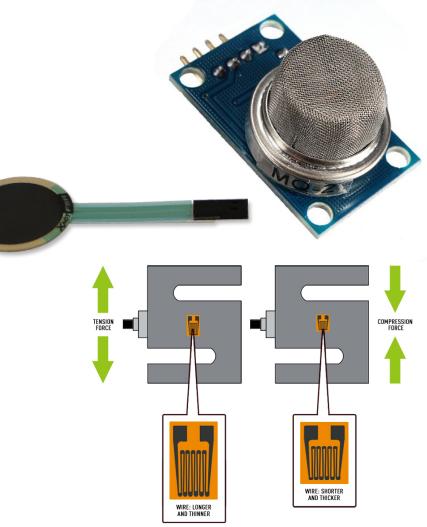
- Light, Colour
 - LDR (photoresistor), Phtodiodes, complex semiconductors
- Sound
 - Microphone, Piezo
- Acceleration


Sensors

Temperature

- Thermistor, Thermocouple, PT100, LM35, DS18x20...
- Humidity, Moisture
 - E.G. DHT11
- Pressure
 - E.G. MPX5100AP

Sensors


Gas Contents

- For example MQx for different gases
- MQ3 for ethanol

Force Sensors

- Force Sensing Resistor (Sensing Stretch)
- Load Cell
- Magnetic Field
 - E.G. HMC5883

Sensor selection?

< Which sensor is good?</pre>

	Compare	Mfr Part #		Quantity Available ⑦	Price	Series	Package	Product Status	
		^	~	~ ~	^ ~	~ ~	~ ~	~ ~	
		2	SDP31-500PA-TR-1500PCS SENSOR 0.07PSID 0.08° 16BIT ISMD Sensirion AG	22 529 In Stock	1 : €19.52000 Cut Tape (CT) 1 500 : €19.52472 Tape & Reel (TR)	SDP3x	Tape & Reel (TR) ⑦ Cut Tape (CT) ⑦	Active	
		► ⊘ ◆	SDP31-500PA-TR-250PCS SENSOR 0.07PSID 0.08° 16BIT ISMD Sensirion AG	1 691 In Stock	1 : €19.52000 Cut Tape (CT) 250 : €21.28632 Tape & Reel (TR)	SDP3x	Tape & Reel (TR) ⑦ Cut Tape (CT) ⑦ Digi-Reel® ⑦	Active	
		► ⊘ 🏕	SDP36-500PA-TR-250PCS SENSOR 0.07PSID 0.08* .9V 16SMD Sensirion AG	843 In Stock	1 : €19.52000 Cut Tape (CT) 250 : €21.28632 Tape & Reel (TR)	SDP3x	Tape & Reel (TR) ⑦ Cut Tape (CT) ⑦ Digi-Reel® ⑦	Active	
			SDP32-125PA-TR-250PCS SENSOR 0.018PSID 0.08' 16BIT SMD Sensirion AG	1 170 In Stock	1 : €19.52000 Cut Tape (CT) 250 : €21.28632 Tape & Reel (TR)	SDP3x	Tape & Reel (TR) ⑦ Cut Tape (CT) ⑦ Digi-Reel® ⑦	Active	
		2	SDP33-1500PA-TR-250PCS SENSOR 0.22PSID 0.08' 16BIT ISMD Sensirion AG	1278 In Stock	1 : €19.52000 Cut Tape (CT) 250 : €21.28632 Tape & Reel (TR)	SDP3x	Tape & Reel (TR) ⑦ Cut Tape (CT) ⑦ Digi-Reel® ⑦	Active	
			SDP816-125PA SENSOR 0.018PSID 0.2" 4.5V Sensirion AG	3 407 In Stock	1 : €19.52000 Tray	SDP800	Tray	Active	
			SDP810-500PA SENSOR 0.07PSID 0.2° 16BIT Sensirion AG	2 531 In Stock	1 : €19.52000 Tray	SDP800	Tray 🕥	Active	
			SDP810-125PA SENSOR 0.018PSID 0.2" 16BIT Sensirion AG	1 464 In Stock	1 : €19.52000 Tray	SDP800	Tray 🕥	Active	
			SDP816-500PA SENSOR 0.07PSID 0.2" 4.5V Sensirion AG	762 In Stock	1 : €19.52000 Tray	SDP800	Tray 🕖	Active	

Datasheet

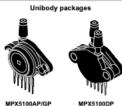
NXP Semiconductors Data Sheet: Technical Data

Document Number: MPX5100 Rev. 14, 12/2018

√RoHS

MPX5100, 0 to 100 kPa, Differential, Gauge, and Absolute, Integrated, Pressure Sensors

The MPX5100 series piezoresistive transducer is a state-of-the-art monolithic silicon pressure sensor designed for a wide range of applications, but particularly those employing a microcontroller or microprocessor with A/D inputs. This patented, single element transducer combines advanced micromachining techniques, thin-film metallization, and bipolar processing to provide an accurate, high-level, analog output signal that is proportional to the applied pressure.


Features

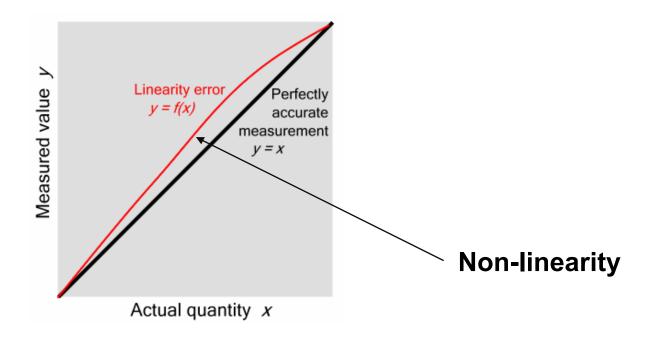
- 2.5% maximum error over 0 to 85 °C .
- Ideally suited for microprocessor or microcontroller-based systems
- Patented silicon shear stress strain gauge ٠
- Available in absolute, differential and gauge configuration ٠
- Durable epoxy unibody element ٠
- . Easy-to-use chip carrier option

Typical applications

- Patient monitoring
- Process control ٠
- . Pump/motor control
- Pressure switching .
- White goods

MPX5100DP 98ASB42796B 98ASA42797B

MPXV5100DP 98ASA99255D



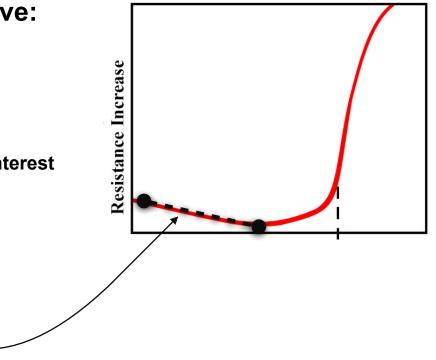
MPXV5100GC6U 98ASB17757C

MPXV5100GC7U 98ASB17759C


			Orde	ring infor	mation				
Device name	Shipping	Package	# of Ports			Pressure type			Device
Device name			None	Single	Dual	Gauge	Differential	Absolute	marking
Unibody Package (/PX5100 Series	5)							
MPX5100AP	Tray	98ASB42796B		•				•	MPX5100AP
MPX5100DP	Tray	98ASB42797B			•		•		MPX5100DP
MPX5100GP	Tray	98ASB42796B		•		•			MPX5100GP
Small Outline Packa	age (MPXV5100	Series)							
MPXV5100DP	Tray	98ASA99255D			•		•		MPXV5100DF
MPXV5100GC6U	Rail	98ASB17757C		•		•			MPXV5100G
MPXV5100GC7U	Rail	98ASB17759C		•		•			MPXV5100G
MPXV5100GP	Tray	98ASA99303D		•		•			MPXV5100GF

Sensor Characteristics: Linearity

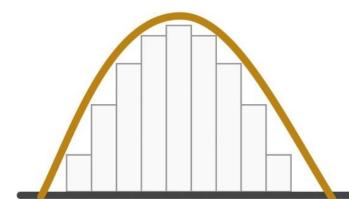
Sensor Characteristics: Linearity


E.G.Thermistor response curve:

Sensor Characteristics: Linearity

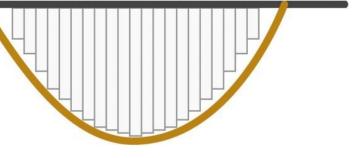
E.G.Thermistor response curve:

Chose sensors that are linear in range of interest

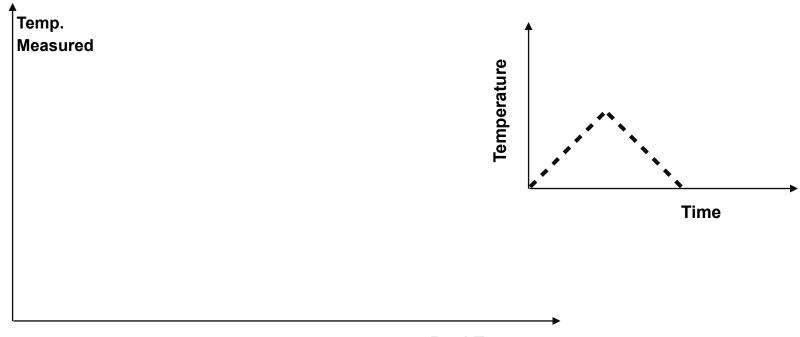

Sensor Characteristics: Stability & Drift

- A sensor is stable if it is able to produce consistent measurements for constant environment
- Drift = differentiation around the constant

Important in process monitoring



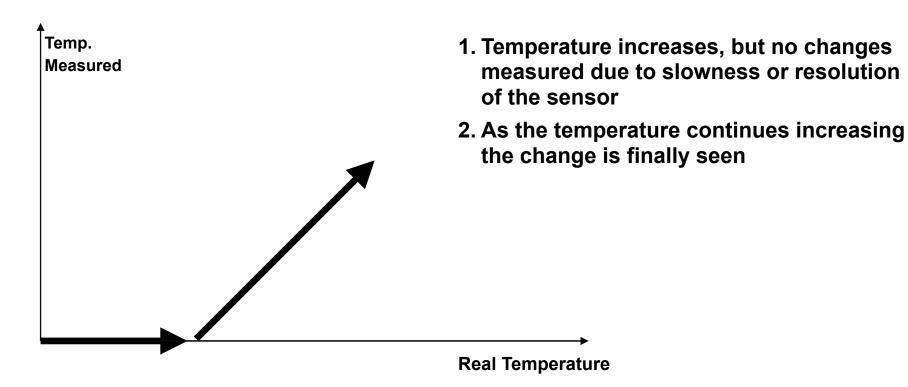
Sensor Characteristics: Resolution



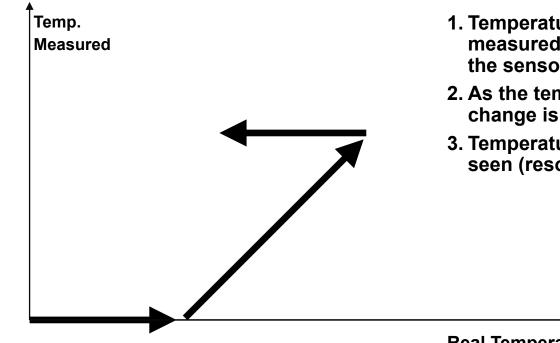
- Sensor resolution should be suiting

- Low resolution increases Hysteresis

Real Temperature



Temp. Measured

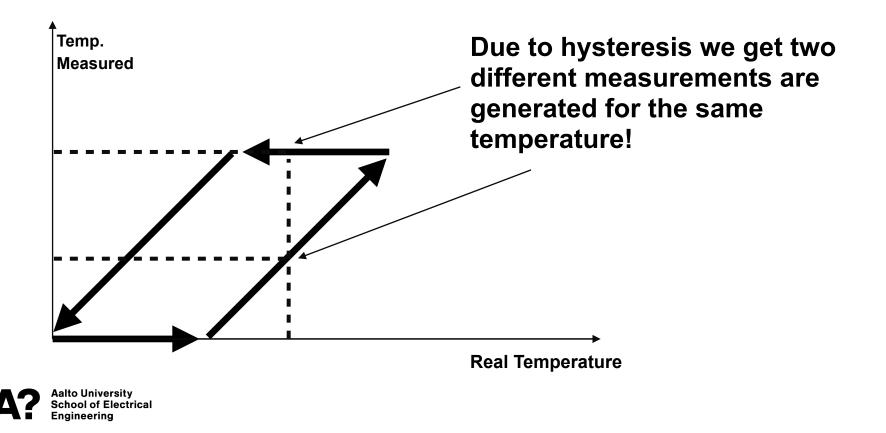

1. Temperature increases, but no changes measured due to slow response or resolution of the sensor

Real Temperature

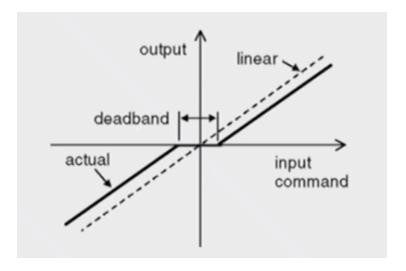
alto University

naineerina

- 1. Temperature increases, but no changes measured due to slowness or resolution of the sensor
- 2. As the temperature continues increasing the change is finally seen
- 3. Temperature starts dropping, but no change seen (resolution & hysteresis)

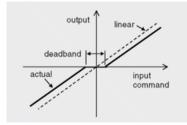

Real Temperature

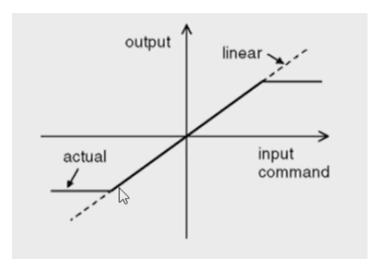
Aalto University School of Electrical Engineering


- 1. Temperature increases, but no changes measured due to slowness or resolution of the sensor
- 2. As the temperature continues increasing the change is finally seen
- 3. Temperature starts dropping, but no change seen (resolution & hysteresis)
- 4. As temperature decreases enough the change is now visible

Real Temperature

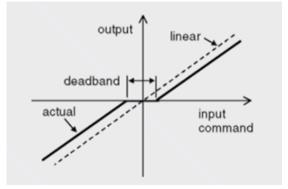
Sensor Characteristics: Dead Space

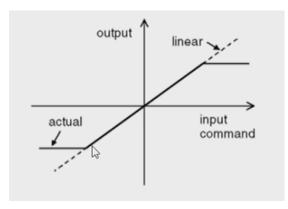

- Some sensors often have Dead Zones (usually near zero value)
 - In dead zone the sensor will not respond to changes
 - Can be added on purpose to counter hysteresis

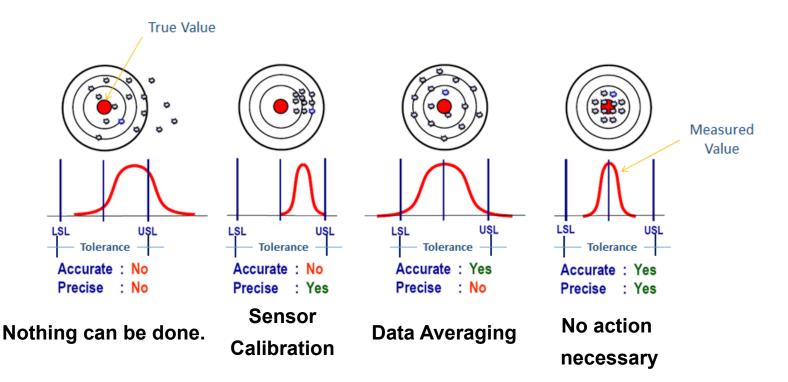


Sensor Characteristics: Saturation

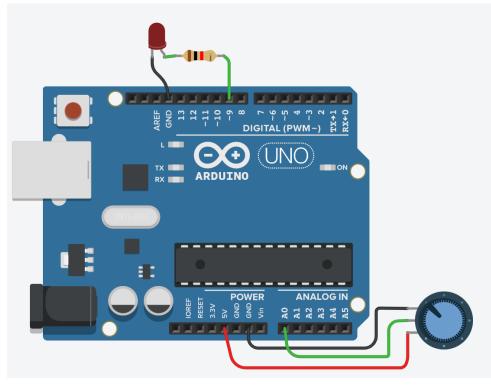
- Some sensors often have Dead Zones (usually near zero value)
- Saturation





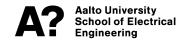

Sensor Characteristics: Data-sheet

- Some sensors often have Dead Zones (usually near zero value)
- Saturation
- Characteristics are documented in sensor data-sheet

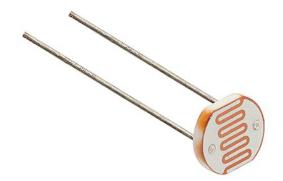


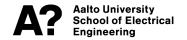
Calibration: Accurate vs Precise

Analog & Digital Sensor Outputs

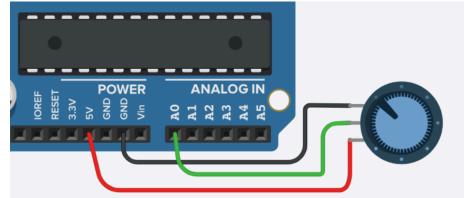

- Most of sensors we have discussed sensed the environment that varied its analog signal
- If analog sensor data is processed by digital hardware it must be converted.

Analog & Digital Sensor Outputs


- A/D converters are used for conversion
- Many sensors have A/D converters built in (easier to use)



Analog & Digital Sensor Outputs


- A/D converters are used for conversion
- Many sensors have A/D converters built in (easier to use)
- High performance sensors usually have only analog inputs

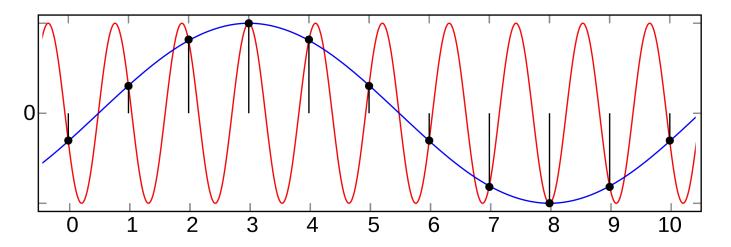
A/D Converters

- Convert analog data to digital through quantisation
 - Leads to some data loss
- MCU's usually have builtin A/D's
 - E.g. in Arduino UNO whenever we use analog pins (analog_read (___)) MCU's A/D unit is used.
 - External converters can be used too
- Noise considerations:
 - Component noise
 - Layout considerations
 - ADC saturation: amplify signal before feeding it to the ADC. <u>Add resistor?</u>

- Sampling frequency:
 - How frequently samples are taken (Value Differentiation Accuracy) E.g. Arduino UNO: almost 1kHz
- Bit depth ("Resolution"):
 - How precise values can be measured. (Value Accuracy)
 - E.g. Arduino UNO: 10 bit (= 1024)

Too small sampling freq > Aliasing Too small bit depth > Quantization error

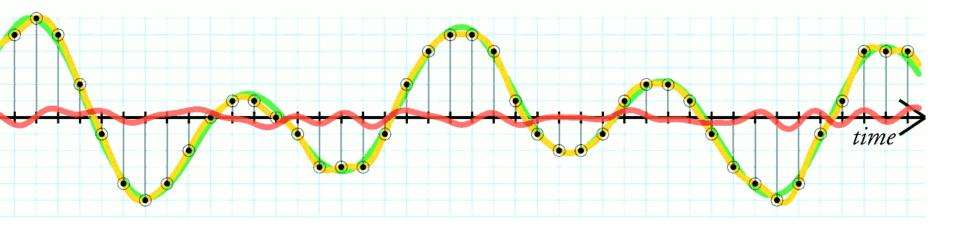
- Nyquist Theorem: Sampling Frequency must be higher than 2 x maximum frequency being sampled.
 - E.g Audio freq. range is <u>20 Hz 20 kHz</u>, Sampling frequency must be <u>40 kHz</u>

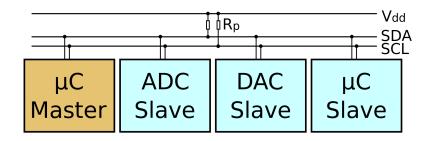


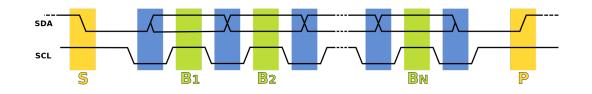
- Aliasing

Aalto University School of Electrical

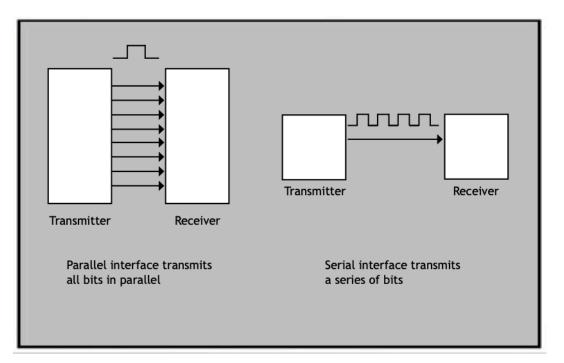
Enaineerina

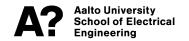

- With low sampling frequency aliasing may occur

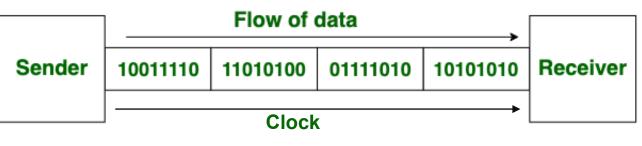

- Low pas filter may prevent aliasing, Aliasing filter


- Aliasing
 - With low sampling frequency aliasing may occur

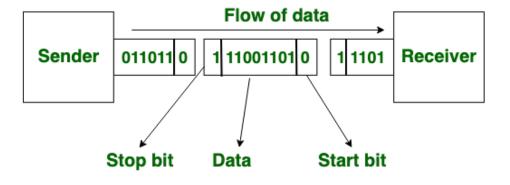
original signal quantized signal quantization noise


- Needed to communicate to sensors & other peripherals (& other devices)
- Implemented with hardware or
- software drivers
- Operate according to protocols
- Arduino libraries (Do not bitbang SPI)



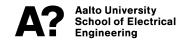


- Serial vs parallel



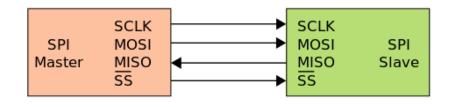
Synchronous Transmission

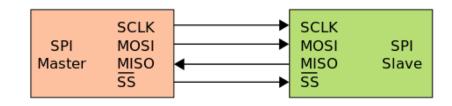
 Serial vs parallel
 Synchronous vs
 Asynchronous


Asynchronous Transmission

PCB Scale - SPI, I2C/DDC/ SMBus, I2S, 1-Wire, ...

Device Scale

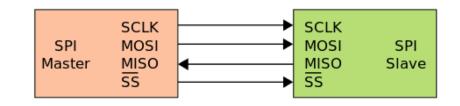

- UART/serial, RS232, RS422, RS485, CAN, LIN, MIDI, USB, ...

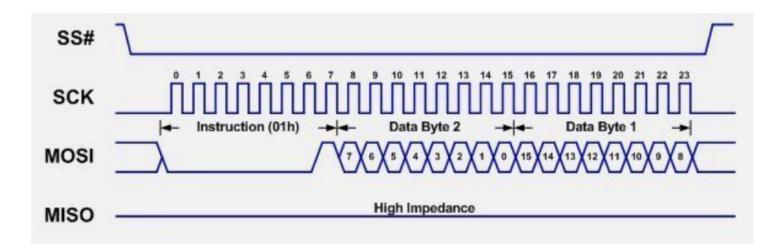

SPI

- Serial Peripheral Interface Bus
 - High speed (up to > 10 MB/s), full duplex capable
- Master initiated, simultaneous bidirectional data transfer capable
 - MISO (master in slave out), MOSI (master out slave in), SCK (serial clock), SS/CS (slave / chip select)
- Easy to use with Arduino libraries (SPI Library)

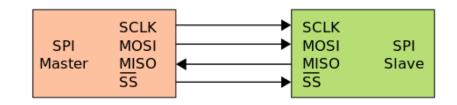
SPI

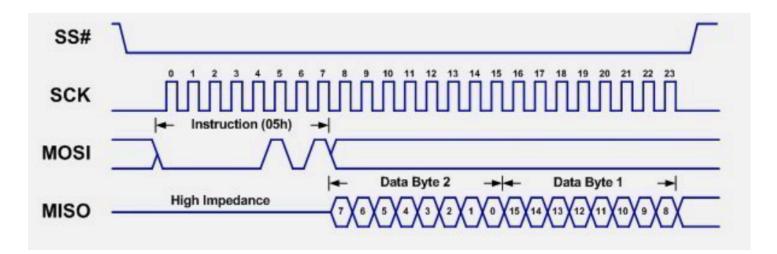
Advantages of using SPI


- The protocol is simple as there is no complicated slave addressing system like I2C.
- It is the fastest protocol compared to UART and I2C.
- No start and stop bits unlike UART which means data can be transmitted continuously without interruption
- Separate MISO and MOSI lines which means data can be transmitted and received at the same time

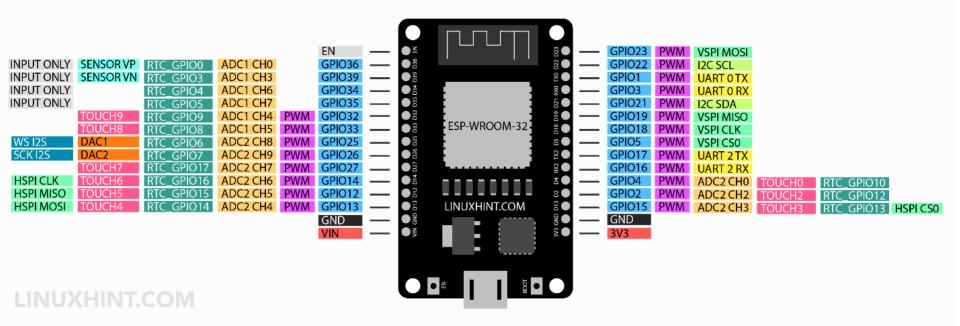

Disadvantages of using SPI

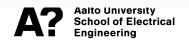
- More Pin ports are occupied, the practical is the number of devices + MOSI, MISO, NCLK, NSS
- There is no acknowledgement mechanism confirms whether data is received unlike I2C
- No form of error check unlike in UART (using parity bit)
- Only 1 master


SPI



SPI





Bit-Banging

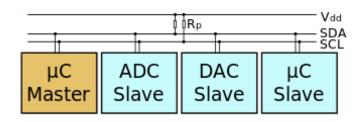
ESP32 PINOUT - 30 PIN VERSION

Bit-Banging

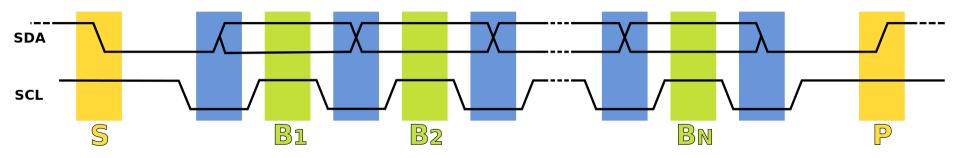
- *If suitable hardware peripheral is not available* (or free), many interfaces can be emulated with bitbanging.
 - Interface behaviour is emulated by swinging GPIO pins to proper state at proper timing, using MCU processing time to control pins *WITH SOFTWARE*
 - Essentially interface needs to be considerably slower than MCU/CPU speed
 - E.g. earlier versions of Arduino Software serial were able to run at max 19200 bps on 16MHz MCU (although now the library has been optimised for better speed)
- Many exotic interfaces need to be bit-banged, in lack of proper hardware peripherals, e.g. 1-Wire

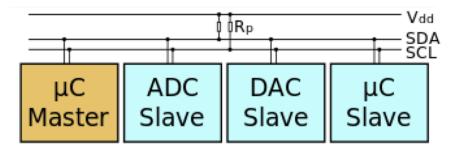
Bit-Banging SPI in C

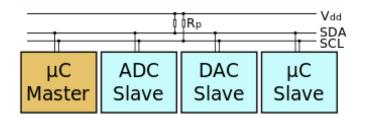
```
// transmit byte serially, MSB first
void send_8bit_serial_data(unsigned char data)
{
   int i;
   // select device (active low)
   output_low(SD_CS);
  // send bits 7..0
   for (i = 0; i < 8; i++)</pre>
   {
       // consider leftmost bit
       // set line high if bit is 1, low if bit is 0
       if (data & 0x80)
           output_high(SD_DI);
       else
           output_low(SD_DI);
       // pulse the clock state to indicate that bit value should be read
       output_low(SD_CLK);
       delay();
       output_high(SD_CLK);
       // shift byte left so next bit will be leftmost
       data <<= 1;
   }
   // deselect device
   output_high(SD_CS);
```


3

Aalto University School of Electrical Engineering


I2C


- Inter-Integrated Circuit, Display Data Channel, System Management Bus...
 - Low speed: 400 / 100 kHz usually, but higher speed devices available (>1 MHz)
 - Developed, Patented & Controlled by Philips Semiconductors
- Master initiated, half-duplex
 - SDA (SerialData), SCL (SerialClock), by default pulled up(pull-up resistors)
 - Several devices can share same bus, (each has 7-bit unique address)
 - Available at VGA, DVI, HDMI-Connectors
 - On PC motherboards RAM connectors (DIMMs)
- Easy to use with Arduino (Wire Library)

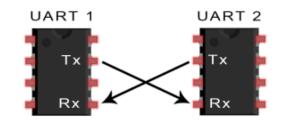

I2C

Aalto University School of Electrical Engineering

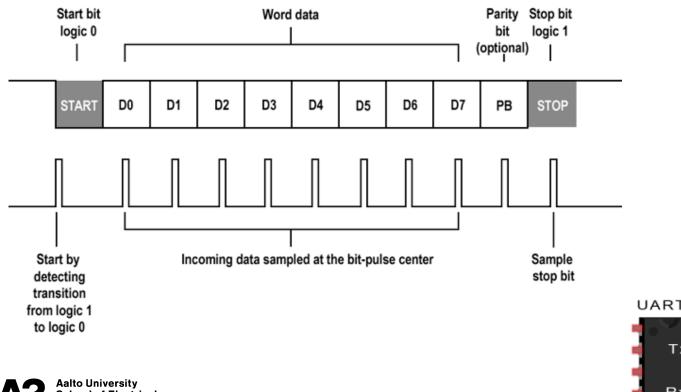
I2C

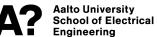
Advantages of using I2C

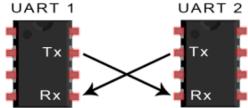
- Has a low pin/signal count even with numerous devices on the bus Simple!
- Flexible, as it supports multi-master and multi slave communication.
- Adaptable as it can adapt to the needs of various slave devices.


Disadvantages of using I2C

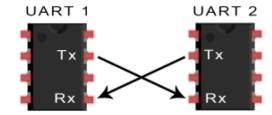
- Slower speed as it requires pull-up resistors rather than push-pull *transistors* used by SPI. It also has an open-drain design = limited speed.
- Requires more space as the resistors consume valuable PCB real estate.
- May become complex as the number of devices increases.




UART


- Serial, Asynchronous, Bidirectional, half-/fullduplex
 - Only TX and RX, no separate clock signal
 - Simple, Easy to use
- Protocol not defined, several standard electrical interfaces
- Usually used for specific peripherals, E.g. Bluetooth transmitters, GPS, GSM or Inter-device communication
- Arduino library: (Serial, SoftwareSerial)

UART


UART

Advantages of using UART

- Simple to operate, well documented as it is a widely used method with a lot of resources online
- No clock needed
- Parity bit to allow for error checking

Disadvantages of using UART

- Size of the data frame is limited to only 9 bits
- Only two devices
- Baud rates ("clocks") of each UART must be within 10% of each other to prevent data loss.
- Low speed

Other

- 1-Wire: Low speed single datawire bus by Dallas/Maxim
 - Several devices can share same data bus
 - E.g. used in DS18x20 digital interface temperature

sensors

- Arduino library (OneWire)

- MIPI: Camera & Display Serial interface, HD resolutions
 - Requires driver to work
 - Found on Raspberry Pi platforms
- USB: Hard, complicated protocol

 Always requires a driver
 (usually it is easier to use a
 USB-UART emulating adapter)
 Supplies power, max 500 mA

