Prototypes and project planning

What are prototypes? How to plan?

Salu Ylirisku 2.6.2023

Today's agenda

- 10:15 Lecture (Salu)
 - **Project planning**
 - Signing the agreements (continues next week)

What are prototypes?

Different uses of 'prototypes'

- As learning tool
- As custom device
- As research instrument

Prototype as Learning Tool

Prototype as a learning tool

- Finding user needs
- Framing the key problem to solve
- Finding novel ways to approach existing problems

Resembles exploring new territories

Prototype as a learning tool

- 1. Set your learning goals
- 2. Define Requirements for the proto from the goals
- 3. Build the proto
- 4. Test it
- 5. Reflect
- 6. Iterate (go to step 1)

Double Diamond

Council, D. (2007). *Eleven lessons: Managing design in eleven global companies. A study of the design process*. British Design Council. Retrieved from <u>www.designcouncil.org.uk</u>

Prototype as Custom Device

Prototype as Custom Device

• You know exactly what you want

- Functions, performance ratings
- Physical structure, mechanics, and materials
- Resembles movie production
 - Key is orchestrating the whole to get done

Prototype as a custom device

- 1. Plan
- 2. Build
- 3. Deliver

Prototype as a custom device -Planning

- 1. Negotiate and define the requirements
- 2. Define the Work Breakdown Structure (WBS)
- 3. Define the activities, assign resources
- 4. Define critical paths and deadlines
- 5. Define the test procedures
- 6. Assess the risks

Waterfall process

Objective

Requirements

Specifications

Implementation

Verification

Aalto University School of Electrical Engineering Shipping

Prototype as Research Instrument

Prototype as Research Instrument

New technology emerges

- You want to try out what it is good for
 - Ranges, durability, errors, surprising new phenomena..
- You want to learn the boundaries of where this new tech can be applied, such as size and power optimization.
- Resembles scientific work
 - Make hypothesis, build the setup, take measures, analyse, improve

A combination – A Research Proto

- 1. Plan
- 2. Build
- 3. Deliver
- 4. Research (with the tool)
- 5. Reflect
- 6. Iterate

For example:

- Proto with CoTS components / dev kits
- 2. Custom proto with more specific capabilities and tailored components

Monolithic vs. Modular Protos

Growing a prototype

- Monolithic prototype is build once, and is difficult to iterate on
 - You may need to build a completely new prototype for the next iteration
- Software projects and modular projects are different
 - The 'iterated' prototype may have most of the parts of the previous prototype

SCRUM

Curcio, K., Navarro, T., Malucelli, A., & Reinehr, S. (2018). Requirements engineering: A systematic mapping study in agile software development. *Journal of Systems and Software*, *139*, 32–50. <u>https://doi.org/10.1016/j.jss.2018.01.036</u>

Roles for Requirements

Roles for Requirements

- Requirements as negotiation items
- Requirements as a way to prioritize
- Requirements as objective quality measures

Requirements for Negotiation

Requirements for Negotiation

- When you have the requirements, you can argue for the needed resources
 - Funding, people, time, facilities...
 - You may need to get in-house and external funding

Requirements specification

- Understand your prototyping approach
 - For reflective learning?
 - For specified performance?
 - For scientific research?

Two kinds of requirements

- Goals
 - What you need to achieve
- Constraints
 - What you need to deal with

Requirements: Constraints

- Time
- Money
- Quality

Costs

• People and their time

- What do their spend their time on?
- What is the result of this spending?

Negotiating your plan

Negotiating your plan

- A project plan is based on the project brief
- The plan needs to be agreed
 - Yes, it is an agreement
 - Deviations must be agreed too
- Good negotiations
 - Listen to what the partner wants
 - If you have relevant skills, you can mention these too
 - Adjust the challenge level by both of these!

You aim is to get your plan right

Plan key activities

- Phases
- Milestones
- Work packages
- Tasks

What is a Phase?

A product development project may have phases, such as

- 1. Specifying the requirements
- 2. Component design
- 3. Component integration
- 4. Testing
- 5. Reporting

Phases always end with a milestone

What is a Milestone?

Milestones are moments of presenting results/handing out deliverables and making decisions

What is a Work Package?

- Work package represent one of the key activities in a project
 - They may overlap different phases, such as 'project management,' 'reporting,' 'circuit design' or 'interaction design'
- Tasks within a work package share the overall goal as well as the resources

What is a Task?

- A task is the lowest level unit in the plan
- It is a single manageable thing to be done
 - Clear start and end condition
 - Clear resources
 - Clear expectations on results

Scheduling: Activities take time...

- Setting up the development context, installing things
- Learning the tools, software, etc.
- Negotiations / meetings
- Modelling, building, coding, soldering, testing, debugging
- Reading data sheets, purchasing, waiting for stuff to arrive
- Travelling, Writing
- People have different skills, and may be available at different times
- ASK Don't assume!

Scheduling

Pro	oject start date	2/5		
1	carry out literature review	2/5-20/6		
2	arrange visits	20/6-4/7		
3	prepare questionnaire	4/7-25/7		
4	review questionnaire	25/7-8/8		
5	deliver questionnaire	8/8-26/9		
6	analyse results	26/9-2/11		
7	write up	2/11-9/12		
Hand-in date		9/12		

Project start date	1				*		
1. carry out literature review	****	**					
2. arrange visits		**					
3. prepare questionnaire	***			1. A.			
4. review questionnaire			**				
5. deliver questionnaire			***	****			
6. analyse results	****						
7. write up			•		**	***	
Hand-in date							
	2/5	20/6	8/8	26/9	2/11	9/12	

Multitasking?

When and how to work in parallel?

- **Durations**
- Interfaces

Responsibilities

- 1 responsible / task
- Max 3 persons on a task

- Person having primary responsibility
- O Some involvement

Work Breakdown Structure

Work Breakdown Structure (WBS)

- Imagine your final result
- Take it into pieces
 - Parts
 - Functions
- Envision what it takes to make each piece
- Write it down

WBS is hierarchical

Start from the top – the overall project outcome

- What is the final result?
- What are the parts (and parts of the parts)?
- What are the main functions (and sub-functions)?

• The intent is to split the whole into *manageable* chunks

First actions

- Before starting with the WBS, take a look at the project brief
 - There you can find information about the need of your client company
 - The brief is just a starting point for negotiations
 - When communicating with the company, <u>write down notes</u> and confirm your interpretations with the company!
 - Be brave and ask questions (from company representative and your TA)

How to create a WBS?

- Start with the structure of the product / the whole that you are dealing with?
- What parts / functionalities it must have?

How to create a WBS?

Consider <u>ready-made components</u> that you can use

How to create a WBS?

- Consider the <u>required deliverables</u>
 - What must be done in order to meet the deadline?
- Consider the <u>scheduling order</u> when things depend on each other
 - Identify critical paths

How to create WBS?

Consider the <u>resources</u>

- People and their availability (man-hours)
- Tools
- Money

Risk management

What are risks?

- Expected undesirable events that make it more difficult for you to reach the desired goal
- Sources
 - Internal: tech, people, process
 - External: supply, environment
- Avoiding risks
 - Expert judgment, informing, planning, negotiating, agreeing
- Responding to risks
 - Changing scope, budget, or schedule

Effective meetings

Always have clear goals for each meeting

- Is it a meeting for decision-making or information gathering?
 - What do you need to decide in the meeting?
 - What do you want to learn about in the meeting?
- Information gathering meetings can be about
 - Substance for the project, i.e. discussing with client
 - Coordinating the project, i.e. checking the situation (task updates, risks)

Each meeting results in a document (or other artefacts)!

Updating the plan

- When you need to update your project plan, make a new version with a version date
- Get agreement for the updated version
 - With minor changes internal approval is enough, for major changes you need to agree with your client
- A draft version needs to be handed to the staff through MyCourses on the 8th of June by 8 pm

Project plan

Project plan

- Template is provided with the MyCourses assignment.
 - The given structure and appearance must be used, additions (sub-chapters, appendices) may be done
- It is MS Word document, but you may use other any text editing tool that you are comfortable with
 - Agree in the team what tool to use!
- Document must be submitted as PDF to MyCourses
- The plan must have all the requirements and it needs to be agreed by the whole team
 - So, meet and agree before submitting the final file

Tips for Contacting the company

Things to consider in the negotiations

- What is the foreseen output by the company?
 - You need to describe this in the Project plan in your own words as the 'expected outcome'
- Are there any project-specific time or resource constraints?
 - E.g. people on holidays, getting the key components, ...
- Are there any recommended materials, parts, or tools to be used?
- Discuss training for specific tools and techniques, if you need such

