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WEEK 6: NONLINEAR ANALYSIS
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5 NONLINEAR ANALYSIS

5.1 LARGE DISPLACEMENT ELASTICITY .o

5.2 LARGE DISPLACEMENT FEA ..ot

5.3 ELEMENT CONTRIBUTIONS
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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise
problems about large displacement FEA:

O Large displacement elasticity theory, principle of virtual work
O Large displacement FEA for solid, thin slab, and bar models

O Non-linear element contributions of solid, thin slab, and bar models
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BENDING OF BEAM
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BALANCE LAWS OF MECHANICS

Balance of mass (def. of a body or a material volume) Mass of a body is constant €

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. €

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular
momentum within a material volume equals the external moment resultant acting on the

material volume. €
Balance of energy (Thermodynamics 1)

Entropy growth (Thermodynamics 2)
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SOURCES OF NON-LINEARITY

O Geometry: Equilibrium equations should be satisfied in deformed geometry depending

on displacement. Strain measures of large displacements are always non-linear.

O Material: Constitutive equation g(o,u)=0 may be non-linear. Near reference
geometry, truncated Taylor series g°+ (09 /0o)°Ac +(0g / ou)°Au =0 gives a useful

approximation.

O External forces: External forces may be non-linear. Even the simplest contact

conditions containing inequalities are always non-linear.

In non-linear mechanics g(o,&)=0 and f(&,u)=0 the effect of material and geometry

cannot be separated in the same manner as !
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EFFECT OF GEOMETRY

Displacement at the free end (u,,w; ) caused by force F in bending of a cantilever. Axial
stiffness EA is assumed to be much larger than the bending stiffness El (I « AL2). Then,

length of the axis is (almost) constant L no matter the deformation.

0.4}
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BOUNDARY CONDITIONS

name symbol equation

o A
joint Up =0

ﬁ/oA

slider Uy, =MN-Up =0

ﬁ/o A One-sided (non-linear) boundary condition!

—

COntaCt UA:ﬁ' AZO,FA:ﬁ'IEAZO,UAFA:O
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EXAMPLE. Determine the relationship between the vertical displacement of node 2
(positive upwards) and force Facting on node 2 for the structure shown. Assume that the
force-length relationship is given by N = EAe and e =h/h°®—-1 in which EA is constant, h°
Is the length when N =0, and h is the length at the deformed geometry (takes into account

the displacement).

\/1+ 2asina +a% —1

Uy 2

=0, where a =
2 h°

Answer r_ 2(sina +a)
EA \/1+ 2asina +a
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e Strain definition should not induce stress under rigid body motion of motion of a bar.

Strain measure e = h/h° -1, based on the relative length change, satisfies the criterion.

At the deformed geometry, when displacement is uy 5,

h=|h°cosal + (h°sina+uY2)j‘ —heJl+2asing+a? =

Sh — oh Sy, = SiIna +a

OUy 7 J1+2asina +a

5UY2 —

2

Uy 2

o .

N = EA(%—l) — EA(W1+ 2asina +a2 —1), where a =

e Virtual work expressions of external and internal forces for one bar element, written at

the deformed geometry with length h, are SW®* = Fsuy, and sW'™ =—Ngsh. As the

5-9



structure consists of two bars (internal parts of the bars are the same by symmetry),

virtual work expression of the structure

\/1+ 2asina +a% —

1
OUy ».
> Jouy

oW =[F - 2EA(sinx +a)

\/1+ 2asina +a

Principle of virtual work and the fundamental lemma of variation calculus are valid also

In large displacement analysis

\/1+ 2asing +a” -1 B

F -2EA(Sina +a) >

0. €&

\/1+ 2asina +a

The remaining —mathematical problem- is to find a solution or solutions to the non-

linear algebraic equilibrium equation.
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FORCE-DISPLACEMENT RELATIONSHIP a=x/3

non-physical (unstable)
2 % /ﬂ 0 1

F/EA %
1 1
0 "wq 0
—1t 1-1

=
[a—

2 T

Finding the solution by a numerical method can be tricky as a mathematically correct
solution may not be physically feasible, displacement (solution) may not depend

continuously on the force (data), solution depends on the loading path, etc.
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5.1 LARGE DISPLACEMENT ELASTICITY

Assuming equilibrium on the initial domain Q°, the aim is to find a new equilibrium on the

deformed domain Q, when, e.g., external forces acting on the structure are changed.

tdA

The local forms of the balance laws are concerned with the deformed domain which depends
on the displacement! Precise treatment of large displacements requires modifications in

stress and strain concepts of linear theory.
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KINEMATICS OF LARGE DISPLACEMENTS

Displacement .................... r=r°+ua(x°vyez°%

Deformation gradient ....... F.=1+V°a

Green-Lagrange............... 2E =F;-F -1 = V°0 + (V°0), +(V°u) - (V°u),
Variation.......cccoeeveeeeveeeennn, SE=F.-06-F where 2&=Vi+ (V).
Domain element ................ dv =JdV®

Jacobian ..........cceceeeiriinennne J =|det[F]|

NANSON <....oorvverreeereeen AdA = JF; 1 A°dA® or dA=JF; 1. dA°
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KINETICS OF LARGE DISPLACEMENTS

Piola-Kirchhoff 1.............. J6=P-F
Piola-Kirchhoff 2.............. J6=F-S-F, (F-S=P)
Force element .................... dF =tdA=1ii-5dA =G, -idA = P-fi°dA°

Virtual work density ......... 5\/\/{,”5 —S:0E, =—6:08,]

Elastic material..-...coooovev. S = Atr(E)I +2uE

Analysis uses the PK2 stress concept. Cauchy (true) stress follows from the relationship
between the quantities. In practice, the simple constitutive equation applies to isotropic

material subjected to small strains (displacements may be large).
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GREEN-LAGRANGE STRAIN

A rigid body motion should not induce strains! The proper strain measures with this respect

are non-linear in displacement components

[(Quy /%) + (A 1 8%)° + (A 1 %)
-+ (Buy 1 y)* +(duy 1 dy)* +(@u, | dy)*

V

Bz ) 6z (uy / 82)* +(Quy 1 62)° +(du, 1 8z)°

(Quy | OX)(Buy 1 By) +(Buy 1 3x)(0uy, 1 By) + (Bu, / Ox)(u, 1 y))
e =14 &y; (T4 (Quy / oy)(ouy I dz) +(duy | oy)(ouy / 6z) + (0u, [ dy)(du, | oz) ;.
Ex) [&x] \(aux [ 0z)(duy 1 0x) +(ouy, / 6z)(Auy 1 Ox) + (ou, / dz)(ou, /ax))

V

All measures boil down to the definitions of linear displacement analysis when strains and

rotations of material elements are small!
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ELASTIC MATERIAL

Under the assumption of large displacement and small strains, the Green-Lagrange strain

measure does not differ much from the linear setting with small displacements and small
strains. Constitutive equations

A ( A e

Eyy . 1 v —v||Sy 2Eyy . Sxy
<EW>:E -v 1 —v |33y and <2Eyz>:a<8yz>,
Bz | v LS, [2E ) [ Sax |

with material parameters C (which replaces E), v, and G=C/(2+ 2v) are same as those

of the linear case, are assumed to simplify the setting. Also, the uni-axial and two-axial

(plane) stress and strain relationships follow just by using Green-Lagrange strains instead
of linear strains and C instead of E.
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PRINCIPLE OF VIRTUAL WORK

Principle of virtual work W™ + sW ! =0 v 50 is concerned with the deformed domain
Q. In large displacement theory, all quantities are expressed in the Cartesian xyz —system

of the initial geometry

tdA

Swnt = B Swintdy = [ wintdve,

ext _ ext ext
oW —jQ owy  dV +jm owy dA

\M,Xtdv0+j SWELdAC.

Physics is related with domain Q occupied by the deformed body but mathematics with the

Initial domain Q° of fixed geometry.
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e Principle of virtual work SW ™ + sW® =0 V50 holds at the equilibrium and therefore
at the deformed geometry. In non-linear analysis, virtual work density of internal forces
IS expressed in terms of Green-Lagrange strain measure and PK2 stress with
SE=F,-6¢-F and dV = JdV° (tensor identity &: (b, -¢-b)=(b-&-b,):¢)

WM =—[ (5108 )V =-[ | &:(Ft-SE-FTHidve =

QO

swint = _ o (If‘l-&-Ifc‘lJ):5I§C)dV°:—IQO (S:5E.)dve. €
eXt_ _’. g — O_’. rg (@)

SW _jQ (pG-ST)AV +.... jQO (p°G-S0)dVOo+.. €

The virtual work density due to gravity uses the balance law of mass in its local form
pdV = p°dVe or pJ=p° (also tdA=1t°dA°).
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VIRTUAL WORK DENSITIES

Virtual work densities of the internal forces, inertia forces, external volume forces due to

gravity are
- p T . A ( ) T ( )
OBy | |Sxx 20Eyy | | Syy
5\’\&I/n§:_<5Eyy> 19y ~129Ey; ¢ {1Syz ¢
\5EZZ J \SZZ J \25EZXJ \SZX)
- N T ( h
t OUy Ox External distributed
ext o)
OWyo =4 0Uy o P°9 Gy - force due to gravity
| ouy | 3

Virtual work densities consist of terms containing kinematic quantities and their “work
conjugates” !
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DENSITY EXPRESSIONS FOR BEAMS AND PLATES

In large displacement theory, the displacement assumptions need to be modified to keep the

Idea of rigid body motion of cross-sections (beams) or line segments (plates). In terms of

strain measures, the virtual work densities of internal forces

Beam: ow,

Plate: sw™

int

(¢]

:—5%(CAE2+CI K2 +GJ 1°),

1
5=
2 ¢

EXX

Eyy

T

> t[C]G<

EXX

Eyy

SR

2E

(XY

2E

\ Xy)

2Kyy

2Kyy

The strain measures of the bar, bending and torsion modes of the beam expression depend

on Green-Lagrange axial strain E, curvature «, and torsion t of the mid-curve.
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e Finally, the strain measures need to be expressed in terms of displacement components.

For example, in a xz —plane beam problem

du 1,du,, 1,dw,-

p=S 27 2 S,
= [z—vxv%—(l d—“)d—W]/[(l by (—) 27312,

These virtual work densities and the strain measure expressions assume. e.g., a Stress-

free flat initial geometry, retain only the most significant terms etc. The generic

expressions in terms of the three displacement components are lengthy.
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5.2 LARGE DISPLACEMENT FEA

O Model a structure as a collection of beam, plate, etc. elements by considering the initial
geometry. Derive the element contributions SW & = SW ™ + sW ! in terms of the nodal

displacement and rotation components of the structural coordinate system.

O Sum the element contributions to end up with the virtual work expression of the structure
oW = ZeeE SW €. Re-arrange to get SW = —5aTR(a)

O Use the principle of virtual work sW =0 Va and the fundamental lemma of variation
calculus for sacR" to deduce the system equations R(a)=0. Find a physically
meaningful solution by any of the standard numerical methods for non-linear algebraic

equation systems.
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BAR MODE

Virtual work expression can be expressed in a concise form in terms of initial and deformed

lengths of a bar element

- ]
oW'™ = —6E,,CA°E,,,

T
S et _ oup-g | p°A°h° |1
5U, - § 2 1]

where E,, =[(h/ h°)2 —1]/2 and h? = (h°+uy, —Ux1)2 +(Uys —uyl)2 +(u,» —uzl)2 of the

deformed element depends also on the nodal displaments in the y— and z —directions.

Transformation into the components of the structural system follows the lines of the linear

displacement analysis.
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EXAMPLE 5.1 Consider the bar structure shown subjected to large displacements.
Determine the relationship between the vertical displacement of node 2 (positive upwards)
and force F acting on node 2. Use the principle of virtual work and assume the constitutive
equation S, =CE,,, in which Green-Lagrange strain E,, =[(h/ h")2 —1]/2 and C is

constant. Cross-sectional area of the initial geometry is A°.

Answer i—2(s,inoz+a)(asinoz+£a2)=O where a:uY_Z
CA° 2 L
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In (geometrically) non-linear analysis, equilibrium equations are satisfied at the
deformed geometry, although the mathematics is related with the initial geometry.

Virtual work expressions of internal forces of the bar element and the point force are

h

swnt :—5EXXCAOEXX:—5hFCAO%[(%)2—1] and SW = Fsuy ,.

For element 1, the relationship between the displacement components in the material

coordinate system are Uy, =Uy,Sina and Uy, = Uy, CoSa giving (a=uyy /L)
h? = (L+uys,sin a)2 +(uy COSa)2 = L2(1+2asina+a2) =

hoh = Suy»2(Lsin +Uy ) = Sal?(sina +a).

For element 1, the virtual work expression of internal forces takes the form
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h

swint —5hFCA°%[(%)2 —1]=-oaL(sina + a)CAO%(Zasin o+ a2).

Virtual work expression of the structure becomes (the internal contribution for bar 2 is

the same due to the symmetry). Hence

OW = 26W "M 4+ sW & = _sal (sina +a)CA°(2asin & +a°) + FL&a.

Principle of virtual work and the fundamental lemma of variation calculus give
—oa[L(sina +a)CA°(2asina + a2) —FL]=0 Vdéa <

i ] F
Sina +a)a(2sina +a) — =0
( )a( ) CAS
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FORCE-DISPLACEMENT RELATIONSHIP

F/CA°

04}
0.2

nn:

0.6

-02f

04}

-06}
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EXAMPLE 5.2 Determine the nodal displacement u, , and u 3 of the bar structure shown.
Use non-linear bar elements and linear approximations. Cross-sectional areas and length of

the initial geometry are A=0.01m? and L=1m. Elasticity parameter C =100 Nm~2 and

external force F =0.05N.

Answer Uz, =0.085m and u;3~0.061m
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e The physically correct solution is just one of the mathematically correct solutions to the
nodal displacements (in this case the number of solutions is 6). The solver for non-linear
analysis returns a real valued solution with the minimal norm. In the example, when

L=1m, A=0.01m% C=E =100Nm™2 ,and F =1/20N:

model properties geometry
1 BAR ({E}, {A}} Line[{3, 1}]
2 BAR [{E}, {A}} Line[{3, 2}]
3 BAR ({E}, {A}} Line[ {4, 2}]
4 FORCE [0, 0, F} Point [{2}]
{X,Y,Z2} {ux,uy,uz} {Ox,6v,0z7}
1 {0, 0, 0} {0, 0, 0} {0, 0, 0}
2 {L, 0, 0} {0, 0, UZ[2]} {0, 0, 0}
3 {L, @, L} {0, 0, UZ[3]} {0, 0, 0}
4 (0,0, L} {0, 0, 0} {0, 0, 0}

fuZ[2] - 0.0854082, uZ[3] > 0.0609567 )
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5.3 ELEMENT CONTRIBUTIONS

Virtual work expressions for the elements combine virtual work densities of the model and
an approximation depending on the element shape and type. To derive the expression for an

element:

O Start with the large displacement versions of the virtual work densities swiit and swed

of the formulae collection.

O Represent the unknown functions by interpolation of the nodal displacement and
rotations (see formulae collection). Substitute the approximations into the density

expressions.

O Integrate the virtual work density over the domain occupied by the element at the initial

geometry to get oW .
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ELEMENT APPROXIMATION

In MEC-E8001 element approximation is a polynomial interpolant of the nodal
displacements and rotations in terms of shape functions. In non-linear analysis,

approximations, shape functions etc. are written for the initial geometry.

Approximation u=NTa always of the same form!
Shape functions N ={N;(x,y,z) N»(X,y,z) ... Np(x,y,2)}
Parameters a={a; a, .. ap}

Nodal parameters ae{ux,uy,uz,ex,ey,ez} may be just displacement or rotation

components or a mixture of them (as with the beam model).
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SOLID MODEL

The model does not contain Kinetic or kinematic assumptions in addition to those of non-

linear elasticity theory. Virtual work density expression of the internal and external forces

for the initial geometry are given by 00° co 4
________ t°dA°

( \T ( ) ( \T ( N
| SE., E,| [20Ey 2E,,
OW/s =—1SE,y ¢ [CI\Eyy r—120Ey, t G42E,,,

\5EZZ ) \EZZ ) \Zé‘EZX ) \ZEZX

J

SWGS =50 gp° and Swis =Su-t°. Sii =0

The solution domain can be represented, e.g., by tetrahedron elements with linear

Interpolation of the displacement components u(x, Y, z), v(X,y,z), and w(X, Y, z)
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EXAMPLE 5.3 A tetrahedron of edge length L, density o, and elastic properties C and v
IS subjected to its own weight on a horizontal floor. Determine the equilibrium equation for
the displacement u,; of node 3 with one tetrahedron element and linear approximation.

Assume that uy 3 =Uy3 =0 and that the bottom surface is fixed and that the geometry and

density described is concerned with the initial geometry (gravity omitted).

Answer: (1+a)a(l+—a)+F =0 where

o2 13
_Limv=avt pOb g a=Yz3
1-v

s

R, 2%
A R R R R R
Y 25
S
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Linear shape functions can be deduced directly from the figure Ny =x/L, N, =y/L,
Ny=z/L,and Ny, =1-x/L-y/L-2z/L.Only the shape function of node 3 is actually
needed as the other nodes are fixed. Approximations to the displacement components

are

Uy =uUy =0 and u, :Euzg, giving a;XZ = a;yZ =0 and %:%UZB.

When the approximation is substituted there, the non-zero Green-Lagrange strain

component takes the form

1 1 1 1
E,, =—Uy3+—5U73 = OE,; =—0Uz3+—Uz30Uz3.
) Z3 2L2 Z3 2z Z3 L2 Z3YY7Z3
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Virtual work densities of the internal and external forces simplify to (we assume that the
material is described by the constitutive equation of linear elasticity theory in which the

Young’s modulus E is replaced by elasticity parameter C)

i —C(l—V) 1 1 1 1 -
SWM — _SE..S. = SUy 2 (= +—Uy ) (=Uy s +——U5%3),

Z
SWFS = -8U, pg = —IP95U23-

Virtual work expressions are obtained as integrals of densities over the volume occupied
by the body at the initial geometry. With a=uz5/L
O T

| | 1
WMt = [ swiltdv = switt =— = — Céu,3(1 ~a%),
[ W =~ Ay Colzstra)ar 5a)
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3
L
é\NeXt j V\&/Xth — —2—,095U23

Finally, principle of virtual work oW =0 with oW =W '™ + W& implies the
equilibrium equation

5 3
E_C0Y) iay@aela?) et pg=0. €
6 (1+v)(1—2v) 2. " 2

Interms of F = 11- : 2" poL the physically meaningful solution is given by
-V
1 \/’\/ U3
a= XTEN 32/3 —1 where a=(-9F + 1+ 27F? )
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THIN SLAB MODE

Virtual work densities of plate combine the thin-slab and plate bending modes. Assuming

that the two modes de-couple and the bending mode can be omitted

( \T ( A
5Exx Exx T
SWht =) SE,, + t°[C].{ By -, WSl = ou p°te Ix where
Yy o Yy SV gy
26E,y | 2B,y |

(B, | [ eurex | | (@ulaPi2+(aviax?i2
VEy t=1 ovldy  t+{  (Quldy)?/2+(ovidy)? )2
2B, | (Ouloy+VIOX] | (au/ax)@uldy)+(@v/ ax)(ov dy)

'

The planar solution domain Q° (reference-plane of the initial geometry) can be represented

by triangular or rectangular elements.
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EXAMPLE 5.4 Consider the thin triangular structure shown. Assuming plane-stress
conditions and Xxy—plane deformation, determine the equation for the displacement
Uy, =al and uy; =al of node 1 according to the large displacement theory. Young’s
modulus E, Poisson’s ratio v, and thickness t are constants and distributed external force

vanishes.

y,Y

Answer: (-1+2a)L a(-1+a)—-F =0

1—v2
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e Nodes 2 are 3 are fixed and the non-zero displacement/rotation components are
Uy;=aL and uy;=aL. Linear shape functions N, =(L-x-Yy)/L, N, =x/L and

N5 =y/L are easy to deduce from the figure. Therefore u=v=(L—-x—-y)a and

( A ( A

Eon | (1] SE 4y (1]
¢ Eyy >:<1>(—a+a2) = 4 0Eyy r=da(-1+2a)11.
2B, | (2] 25E,y 2.

e Virtual work density of internal forces simplifies to

( \T ( A
5EXX EXX

Swiit = —4 SEyy ¢ t[Cl,1 Eyy =-da(-1+ 2a) ( a+a’).
26E,y | 2B,
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e Integration over the triangular domain gives (integrand is constant)

oW1 =—sa(-1+2a)L? 2tE

(—a+a?).
1-v

2

e Virtual work expression for the point forces follows from the definition of work

SW?2 =_25aLF .

e Principle of virtual work in the form oW = SW!+6W? =0 Vsa and the fundamental

lemma of variation calculus give

oW =—daL[(-1+2a)L 2th(—aJraz)—ZF]:O Voa <
1-v
(-1+2a)L ZtEZ(—a+a2)—2F=0. €
1-v
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The point forces acting on a thin slab should be considered as “equivalent nodal forces” i.e.
just representations of tractions acting on some part of the boundary. Under the action of an
actual point force, displacement becomes non-bounded. In practice, numerical solution to

the displacement at the point of action increases when the mesh is refined.

e In the Mathematica code of the course, the problem description is given by

model properties geometry
1 PLANE {({E, v}, {t}} Polygon[{1, 2, 3}]
2 FORCE {-F, -F, 0} Point[{1}]

{XJYJZ} {UXJUYJUZ} {@XJ@YJ@Z}
1 {0, 0, 0} {La[l], La[1], @} {6, 0, 0}
2 {L, 9, 0} {0, 0, 0} {0, 0, 0}
3 {6, L, 0} {0, 0, 0} {0, 0, 0}
SW = _(5a[1] )T(_ZL(F—Fv2+LtEa[1] (i—Ba[lea[l]z)) )

-1+v
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BAR MODE

With the assumptions of the bar model G = u(x)i +Vv(x) ] +W(x)k, S =S, il etc. in the

generic expressions for large displacement analysis for the solid model simplify to

- ]
SWeys = —OB A°CE,, ,

SWER = A°posT - §

du 1 du,» 1,dv,o 1, ,dw,»
where E,, =—+—(—) " +=(—)"+=(—)".
O dx 2(dx) 2(dx) 2(dx)

In FEA, the solution domain (a line segment) is represented by line elements and the

displacement components u(x), v(x), w(x) by their interpolants.
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e Let us start with the kinematical assumption T =u(x)i +v(x)]+w(x)k. The Kinetic

assumption is S = S, i1 . Green-Lagrange strain and its variation are

1 ,dw

Cx

du 1, du 1 dv
=+ ()

1 dou doudu doévdv dowdw
X dx 2'dx” 2dx” 2

+ + + .
dx dx dx dx dx dx dx

2
) 5Exx:

Assuming the constitutive equation S,, = CE,,, virtual work densities of the internal

and external forces per unit length of the initial domain become (expression is integrated
over the cross section of the initial geometry)

Swilt = —0E,A°CE,, and SWEL = A°p°(oug, +0Vgy +owg,). €
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BAR MODE

Virtual work expression can be expressed in a concise form in terms of initial and deformed

lengths of a bar element

- )
ow'™ = —6E, ,CA°E,,,

T
S et _ oup-g | p°A°h° |1
SU, - § 2 1]

where E, =[(h/h°)?-1]/2 and h? = (h°+ Uy, — Uy )? + (Uyp —Uyg)? + (Uzp —U,)? OF the

deformed element depends also on the nodal displaments in the y— and z —directions.

Transformation into the components of the structural system follows the lines of the linear

displacement analysis.
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e Linear approximations to the displacement components give constant values to the

derivatives du/dx, dv/dx, and dw/dx and the Green-Lagrange strain component E,,
Is simply the relative difference in the squares of lengths:
C1h%—(h9)* 1_h sh h

2
E =—[(—)"-1] and JE,, =——.

e As virtual work density of internal forces is constant and the approximation linear

Virtual works of internal and external forces become

h

he

-

g,0Uy + g,0Uyq + g,0u 1

é\Next _ x“Hx1 y“Hyl z¢H171 ipohvo{ } &
gxOUyp +yoUyo +gz0Uzp| 2 1

SW M = switt he = —sh CAOE[(L)2 -1, €
2 he
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It is noteworthy that PK2 does not represent the true stress in bar. The constitutive
equation for the (true) axial force in terms of Green-Lagrange strain follows from the
relationship between the Cauchy stress and PK2 stress. Here the relationship
J6=F-S-F, simplifies to Jo = FSF in which J =V /V° =hA/h°A° and F =h/h°
giving

he h° hA  h° he h h

o =— (6A)=—N = N=—A°S=—A%CE.
h ~ h h°A°  hA° hA° he ho

Using the axial force N and the variation oh (at deformed geometry)

h

SWN = _Nsh = —5hFCA°%[(%)2 —1] (same as earlier).
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EXAMPLE 5.5 Write the virtual work expression of the structure shown in terms of the
nodal displacement u,, and u,3. Use non-linear bar elements and linear approximations.
Solve for the nodal displacement when the cross-sectional areas and material properties are
L=1m, A°=1/100m?, C =100Nm™ and F =1/20N.

Answer u22=0.085m and Uz3=0.06]m
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e For bar 1, the nodal displacement components of material coordinate system are
Uy =Uy; =0, Uyg=—Uy3/~/2, and U3 =Uy3/~/2. As approximations are linear,

derivatives are

du ( UZB) U23 dV d_W_( UZB) _Uz_3
dx \/_ J2L 2L Tdx T dx J272L 2L
luzs ., 1luzs 1ouzg ., Uzs
E, =—=01+—%= = OE,, =— 1+—%2).
e ( > I_) e ( 1 )

When the approximations are substituted there, virtual work expression of internal forces

simplifies to (density is constant)

UZB) CA° UZB

4\/§L(2 —£3).

é\Nl = —5U23(1+
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For bar 2, the nodal displacement components are Uy3=-Uy3 , Uy =-Uy» and

u,» =U,3 =0. As approximations are linear, derivatives and the Green-Lagrange strains

take the forms

du _ Uyp —Uyg :uz3—uzz’ dv:o,andd—wzo.

dx L L dx dx

U-2—U 1Uu-,—U oU-4 —0U U72—U
EXX: ZBL Z?2 (1+E ZBL ZZ) — 5EXX: ZBL ZZ(1+ ZBL ZZ).

When the approximations are substituted there, virtual work expression of internal forces

simplifies to

- —u Uya—U
é\NZ:—(5u23—5u22)(1+uZ3LUZZ)CAOUZ3L zz(1+% zsL 22y
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e For bar 3, the nodal displacement components are Uyy =U,4 =0, Uyp =—Uz> /2, and

U,o =—Uzo /2. As approximations are linear, derivatives and the Green-Lagrange

strain take the forms

d_u:(_uZZ) 1 :_UZZ dV:O andd_W:(_uZZ) _ UZZ

dx 2720 2L dx dx 2721 2L’
1“22 1“22 15U22 Uz o

E, =-—22(_1,="22y _ sg 1 dz2y,

=T ( > I_) XX = (-1 I_)

When the approximations are substituted there, virtual work expression of internal forces
simplifies to (density is constant)

CA” Suy,(—1+22yY22 (o, Uz2)

42 L L L

SW?S = —
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Virtual work expression is sum of the element contributions. By taking into account also

the point force contribution SW* = ouz-F

CA° Uz3

42 L

éW=—5Uz:s(1+u23) (2+ UZS) (Suzg —Buz o)L +-23 LUzz)X

u u 1u u u CA° u u
CA° L3 Y72 14 Z3 Y72 Su 14 ZZ Z2 ., ZZ 4+ Su--F .
ST ) —ouz( ) w7 L (-2+—55)+duz;
Principle of virtual work and the fundamental lemma of variation calculus give a non-

linear algebraic equation system for the non-zero displacement components u», and

Uz3. In most cases, finding an analytical solution in terms of the parameters of the

problem is not possible.
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EXAMPLE 5.6 A bar truss is loaded by a point force having magnitude F as shown in the
figure. Determine the equilibrium equations according to the large displacement theory. At
the initial (non-loaded) geometry, cross-sectional area of bar 1 is A° and that for bar 2
A°/ /2. Also, find the solution for L =1m, A°=1/100m?, C =100Nm 2 and F =1/ 20N

Answer Uy, =-0.085m and uy, =0.25m
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For bar 1, the nodal displacement components of material coordinate system are

Uy =U,; =0, Uyp =Uy >, , and U,, =Uz,. As the approximations are linear

du :sz’ dv:O’ and dw _uz,
dx L dx dx

and the virtual work expression (density is constant) of internal forces simplifies to

u u u u u
é\le—(5UX2+5UX2XT2+5UZZ ZZ)CAO[ XZ ( XZ 2+ ( ZZ) ]

For bar 2, the nodal displacement components of material coordinate system are
Uyg =U,3 =0, Uyp = (Uy, +Us,)/+/2 and u,, = (~Uy, +U5,)/~/2 (notice the use of

Initial geometry). As the approximations are linear

du uxpo+Uzpy dw  Uzp—Uy>

dx L dx L
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and the virtual work expression (density is constant) of internal forces simplifies to

Uy 5 +U Us oy —U
OW 2 = —[SUy p +8Uzo +(SUy o + Uz )( sz £2) 4+ (SUzy —Suy »)(—22 1 X2)]x

Uy o> +U 1 Uy-+uU 1 u-,-—U
CAO[( XZL ZZ)+E( XZL 22)2+E( Z2 - X2)2].

Virtual work expression of the point follows from definition of work
3_
OW*® =Fduz,.

Virtual work expression is sum of the element contributions. After a considerable
amount of manipulations, the standard form with notations a;=uy,/L and

do =U22/L
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é\N — J F 2 2 >:0-
8 85—[23‘1(14-53‘2)4-3.1 (1+532)+3.2(2+332 +532)]

" J

( 2 2
_&{5UX2}T —(1-|— al)(lOal +5a1 + 232 +532)

5UZZ

Principle of virtual work and the fundamental lemma of variation calculus give a non-

linear algebraic equation system (a; =uz3/L and a, =uz,/L)

N

(—(1+ a1)(10a; + 5a12 +2a, + Sa%)

8%—[2a1(1+ 5a,) +a2 (1+5a,) +2, (2 + 33, +533)]

- J

It is obvious that finding an analytical solution in terms of the parameters of the problem
becomes impossible even when the truss is very simple if the number of non-zero

displacement components exceeds one. Mathematica code of the course gives the real
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valued solution with the minimal norm (that is likely to be the physically meaningful
solution when the initial displacement is zero) (L=1m, A°=1/100m?,
E=C=100Nm™ and F =1/20N.

model properties geometry
1 BAR {{E}, {A}} Line[ {1, 2}]
2 | BAR {{E}, {%H Line[{3, 2}
3 | FORCE (@, @, F) Point[{2}]
{X,Y,Z} {ux,uy,uz} {Ox,6y,02}
1 {0,0, L) {0, 0, 0} {0, 90, 0}
2 {L, 0, L} {uX[2], 0, uz[2]} {0, 0, 0}
3 {0, 90, 0) {0, 0, 0} {0, 90, 0)

[UX[2] — -0.0848497, uz[2] - 0.25)
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