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In the previous lecture...

You:

- Understood the concept of stability of dynamic systems

 Got introduced to the Routh-Hurwitz method as a tool for assessing system
stability.




Learning outcomes

By the end of this lecture, you should be able to:

- Understand the concept of the root locus and its role in control system design
* Know how to obtain a root locus plot by sketching or using MATLAB

- Be familiar with the PID controller as a key element of many feedback systems
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The closed-loop characteristic equation
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* The dynamic performance of a closed-loop control system is described by the
closed-loop transfer function

L 1 - G(s) 7 (s K(s)G(s) (s
) = T R0 “P T T R0 Y T T RE6E

* Note: All the closed-loop transfer functions have the same denominator.



* The closed loop poles are the roots of the closed-loop characteristic equation
14+ K(s)G(s) =0

* The performance of a feedback system
» Closed-loop stability of the system

» Characteristics of the closed-loop system’s transient response
(e.g., speed of response, presence of any resonances etc)

can be described in terms of the location of the roots of the characteristic
equation in the s-plane.

* The poles lie in the s-plane, and given s is a complex is a complex variable, the
characteristic equation may be rewritten in polar form as

K (s)G(3)|£(K(s)G(s)) = —1+ 40

and therefore it is necessary that

K(s)G(s)] =1 and /(K (s)G(s)) = 180° + k360°



The root locus plot

* Root locus plot: a graph showing how the roots of the characteristic equation
move around the s-plane as a single parameter varies

» a powerful tool for designing and analyzing feedback control systems

» frequently necessary to adjust one or more system parameters in order to obtain
suitable root locations — determine how the roots of the characteristic equation
of a given system migrate about the s-plane as the parameters are varied

» provides the engineer with a measure of the sensitivity of the roots of the system
to a variation in the parameter being considered

* The root locus plot may be used in conjunction with the Routh-Hurwitz
criterion



The root locus concept - Proportional control

* In this case, K(s) = k,

f_f@é kpla G(S)l y

o Typical result of increasing the gain kp, (for systems where G() is stable):

v Increased accuracy of control
- Increased control action

- Reduced damping (— more oscillations)

- Possible loss of closed-loop stability for large gain kp



Example 1:

* Consider the following critically damped 2nd-order system

1
G(s) =
(S) (S _|_ 1)2
Then
1
_ k G(S) _ kp (s+1)2 _
y(s) = — 7(s) = 7(s)
1+ k,G(s) 1+ kpﬁ
ky _
5242541 +kpr(8)
“root locus plot”
A
The characteristic equation representing this system is ¢
A(s) =8 +2s+1+k,=5"+2(w,s+w2 =0 —F >
v

P Movement of closed-loop
poles as k, increases

The closed-loop polesare s = — 1 ij\/l?



 The damping factor and natural frequency can be computed by

Cwn:]- N wn:V1+kp

w,,% = 1] + kp C — 1{I—kp
Reminder: R(s)=-{ 2 | vs)
Sl H(s) = L >
$% 4 2Cwp s + w? |

* The behavior of the system is as follows:

{=|0

5 \/’4 The behavior of the system is fully

» characterized by:

0.6
1.2

Yo 10 « ¢ the dumping factor

0.8
(= 0.7

0.6 0.8
N * w, the natural frequency

0.4

0.2




Reminder (continued):

—b+Vb?% — dac
51,2 = 9
a . 5 “root locus plot”
_ —2Cwy, = \/ (22Cwn) — 4wz increasingzx Im{s}‘
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i Reminder (continued):

» Typical specifications for the step response:

- Steady-state accuracy Coq

- Rise time (10% — 90%)  tr=1.8/(wy)

« Peak overshoot My~ e~ T¢/V1=¢
- Settling time (1%) te=4.6/(Cwy)




* Steady-state errors using the Final Value Theorem (FVT):

. o | k) 1
A y(t) = lim sy(s) = s +25+1+4k,s
kp kp

:1. p—
s%s2+25+1+kp 1+ k),

Therefore, the steady-state error is

tlggloe(t) =1- tlggloy(t) T + ky,

« Hence, in this example, increasing k, gives

v smaller steady-state errors

- but a larger and more oscillatory transient response
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The root locus concept - Proportional + Derivative control

e In this case, K(s) = k, + k;s

,}7. -

+ u |

Y

Y &<|

~
NE
%)

e Typical result of increasing the gain &, (for systems where G(5s) is stable):
v Increased damping

- (Greater sensitivity to noise
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Example 2:

* Consider the following critically damped 2nd-order system

1
Gls) = (s 4+ 1)2
Then
o (ky+kes)G(s) . (kptkas)inr
9) = T b T ke Gs) S T 1 (k) + kds)ﬁr(s)
(kp + de) _(S)

= r
?+ 2+ kg)s+1+k,
The characteristic equation representing this system is

A(s) =8+ (2+kg)s+1+k,=5"+2(w,s+w:=0
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e Solving for the damping factor

2w, = 2+
w2 =14k,
k

Movement of closed-loop
poles for increasing k,

“root locus plot”

15



The root locus procedure
* We will develop an orderly procedure of 6 steps that facilitates the rapid
sketching of the root locus
» Step 1: Locate the poles and zeros on the s-plane with selected symbols

(by convention, we use 'x' to denote poles and 'o' to denote zeros)

For example, consider the case 1 + k,G(s) = 0. We can write it in the form

[Li=,(s — z)
pH?ﬂ(S — pj)

By rewriting the above equation as

1+ k =0

m

H(S _pj) + ka(S — Zz) — 0

1=1
it is easy to observe that for kp = () the poles of the characteristic equation are

the same as the poles of system G(s)
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mwp
30

Alternatively, the above equation, for k, # 0, can be written as

m

%Hs—pj H(s—zi):()

=1

Therefore, as kp — 00 the roots of the characteristic equation are the zeros of

system G(s)

Therefore,

» the locus of the roots of the characteristic equation 1 + kpG(S) = 0 begins at the

poles of G(s) and ends at the zeros of G(s) as kp increases from zero to infinity

» For most systems G(s) that we will encounter, several of the zeros of G(s) lie at
infinity in the s-plane.This is because most of our systems have more poles than
zeros. With n poles and m zeros and n > m, we have n — m branches of the root
locus approaching the n — m zeros at infinity

alto University
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e Step 2: Locate the segments of the real axis that are root loci. The root locus
on the real axis always lies in a section of the real axis to the left of an odd
number of poles and zeros.

This can be observed by the phase requirement: £(k,G(s)) = 180° + k3607 .
Therefore,

m n

Z /(s — z) — Z /(s —p;) = 180° 4 k360°

i=1 j=1

Only to the left of an odd number and zeros the equation above is satisfied on
the real axis!
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Example 3:

* A single-loop feedback control system has the characteristic equation

2(s + 2)

1+ k,G(s) = 1+kps(s—|—4)

=0

Step 1: The zeros and the poles of G(s) are shown in the figure below

Zelro A

A
N

poles

i

Step 2: Due to the angle criterion, the locus begins at the pole and ends at the
zeros, and therefore the locus of roots appears as below
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Observations:

» Since the loci begin at the poles and end at the zeros, the number of separate loci
Is equal to the number of poles since the number of poles is greater than or equal
to the number of zeros

» The root loci must be symmetrical with respect to the horizontal real axis because
the complex roots must appear as pairs of complex conjugate roots

» Since the system in this example has two real poles and one real zero, the second
locus segment ends at a zero at negative infinity

» 10 evaluate the gain kp at a specific root location on the locus, we use the

magnitude criterion. For example, to have a root at 5; = — 1, we have
2 2
k, 151 + 2| 1
51|51 + 4
2l — 1+ 2
IS /I
—1[—1+4

2 3
kpgzlikp:§
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e Step 3: The loci proceed to the zeros at infinity along asymptotes centered at
o, and with angles ¢,. When the number of finite zeros of G(s), m, is less than
the number of poles, n, by the number N = n — m, then N sections of loci
proceed to the zeros at infinity along asymptotes as kp approaches infinity.

The asymptotes are centered at a point (asymptote centroid) on the real axis
given by

Z?:1 Dj = D ieq Zi

n —1m

OA —

The angle of the asymptotes with respect to the real axis is

2k 4 1)180°
qu:( 1)  k=0,1,2,....n—m—1
" — 1M

(proof can be found in reference book, pp. 452-453)

A' Aalto University
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Example 4:

* A single-loop feedback control system has the characteristic equation

1
1—|—kpG(s):1—|—/€pS(8_|_2) =0

Step 3: Since n — m = 2, we expect two loci to end at zeros at infinity. The
asymptotes of the loci are located at a center

Zyzl Pj— 2 ie1 % 0+ (—2)
n—m 2

and at angles

(2k -+ 1)1800 B (2k -+ 1)1800
n—m B 2

= — (2k +1)90°, k=0,1

A' Aalto University
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Example 5:
* A single-loop feedback control system has the characteristic equation
s+ 1

14+ k,G(s)=1+k =0
T kpGls) i Ps(s+2)(s+4)2
Step 1: Locate the poles and zeros:
A
7,y X © N >
—4 —2 ~1 0

we would expect an asymptote centroid
around there

A' Aalto University
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Step 3: Since n — m = 3, we expect 3 loci to end at zeros at infinity. The
asymptotes of the loci are located at a center

o XmPim i s 0+ ()42 (=) -9,
A n—m B 3 3

and at angles

(2k + 1)180° B (2k + 1)180°
n—m B 3

da = — (2k +1)60°, k=0,1,2

A

A' Aalto University
School o f Electrical
B Engineering 24



* Step 4: Determine the break-in and breakaway points on the real axis (if any).
For each s = o on a real-axis segment of the root locus,

1
14+ k,G(o)=0=Fk, = —
+ p (O) p G(O’)
Real-axis break-in and breakaway points are the real values of ¢ for which
dk
p(0) 0
do
breakaway 0
point \
_)2( > 1} < XO >

Alternatively, it can be shown that a breakaway or break-in point satisfy

1 1
ZU—Z};:Z
1 J

O'—pj

A' Aalto University
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Proof: Consider the characteristic equation
Y(s)

1+kpG(s):O:>1+kpX(8)

— 0= X(s)+k,Y(s)=0

For a small change in kp, we have
0k,Y (s)
X(s) + kpY (s)

X(s)+ (kp, +6kp)Y(s) =0=1+ =0

Since the denominator is the original characteristic equation, a multiplicity r of
roots exists at a break-in or a breakaway point. Hence,

}/(S) o C% C%

X(s)+kpY(s) (s—s)"  (ds)"

Therefore,
C; Ok (5S)T_1
1+ 6k — L =
O ey — VT s C;
As we allow 5kp — (), we obtain
dk,
s )
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Example 6:

* A single-loop feedback control system has the characteristic equation

B (s —=3)(s—95)
1+kpG(s)—1+kp(S+1)(S+2) =0

So, on the real-axis segments we have

k(o) = _(O+1)(U+2) _ o0+ 30 +2
0 (0-3)(0-5) 0280415
Taking the derivative with respect to o, jal
dky(0) _ _110” — 260 — 61 _ e o
- — oint
do (02 — 80 + 15)? :

01 — —1.45
=
O9 — 3.82

A' Aalto University
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o Step 5: Determine where the locus crosses the imaginary axis (if it does so).

1st way: Using the Routh-Hurwitz criterion:

» When we have jw-axis crossings, the Routh-table has all zeros at a row

» Find the value of kp for which a row of zeros is achieved in the Routh-table.

2nd way: Alternatively, If s = jw is a closed-loop pole on the imaginary axis,
then

1+ k,G(jw) =0
The real and imaginary parts of the equation above provide us with 2 equations

with two unknowns kp and w (i.e., the critical gain beyond which the system
goes unstable, and the oscillation frequency at the critical gain)

A' Aalto University
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Example 7 (1st way):
* A single-loop feedback control system with closed-loop transfer function

K(s+3)

T(s) =
(5) s*4+7s3 4+ 1452+ (8+ K)s + 3K

The Routh table is given by

s ] 14 3K
53 7 8+ K

52 90 — K 21K

§ —K? — 65K + 720

‘ 90 — K

sV 21K

lis zero for K = 9.65. For this K, the previous row polynomial is

The row s
(90 — K)s* + 21K = 0
whose roots are s = £ j1.59

A' Aalto University
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Example 7 (2nd way):

* A single-loop feedback control system has the characteristic equation

s+ 3
1—|_kpG(S)_1—|_kps(3—|—1)(5—|—2)(s—|—4) =0

So, on the imaginary-axis we have

kyG(jw) = —1 = —w* + jTw? + 14w* — j(k, + 8)w — 3K = 0

Jo

Separating real and imaginary parts,

s-plane

Asymptote .
—w* 4+ 14w? — 3K =0 . 2 bl irdampod
3 terms at this point
. . Asymptote
In the second equation, we can discard -« —— —— s o
-4 - -
the trivial solution @ = 0. It then yields
41
o  kp+38 P
W = »
7 Asymptote 172
. . . . \
And substitute in the first to find kp 1473

A' Aalto University
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e Step 6: Determine the angle of departure of the locus from a pole and the
angle of arrival of the locus at a zero, using the phase angle criterion.

The angle of locus departure from a pole is the difference between the net
angle due to all other poles and zeros and the criterion angle of

+(2k + 1)180°, and similarly for the locus angle of arrival at a zero.

breakaway 4 -1+j 1

_ X
point \

- > < - > 7AN
9 —11 0

X_q_;

Due to the phase criterion, the tangents to the loci at the breakaway point are
equally spaced over 360°. Therefore,

» in left figure, the two loci at the breakaway point are spaced 180° apart

» in right figure, the four loci are spaced 90° apart

A' Aalto University
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Proportional + Integral + Derivative control

e In this case, K(s) =k, + k;/s + ks

ki/S
+ —_
Y o+ + u Yy
()
—© v | oo |
B +
de

« The continuous-time PID controller (in time domain) is

u(t) = Ke(t +K/ Zit)

- Taking Laplace transforms:
K.
u(s) = (Kp + ? + de) e(s)
Al B -




Proportional + Integral control

e In this case, K(s) = k, + k;/s

r + + U
@.,kp > G(S)l

Y \<I

e Typical result of having integral control £;:

v (if stabilizing) always results in zero steady-state error, in the presence of
constant disturbances and demands

A' Aalto University
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Example 8:

* Consider the following critically damped 2nd-order system

1
(s +1)°

G(s) =

Then

5(s) (kp + ki/s)G(s)

"1+ (ky + ki/S)G(s)f

_ (kps + ki) =
s(s+1)2+ ks + k;

Applying the FVT:

lim y(t) = lim sy(s) = lim s

t— 00 s—0 s—0 S(S -+ 1)2 -+ kpS -+ kz g

Therefore, there is no steady-state error!

A' Aalto University
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P-Controller

* The obvious method - proportional control

« This method fails if, for instance, the error corresponds to more than a single
task or the system changes; hence, for the same error, different gains are
needed.

No control
Increasing K, (K, =0)

-t

Time

- That's where the integral and derivative terms play their part.

35



I-Controller

- An integral term increases action in relation not only to the error, but also the
time for which it has persisted. So, if applied control action is not enough to
bring the error to zero, this control action will be increased as time passes.

* A pure "I" controller could bring the error to zero, however, it would be both

slow reacting at the start, brutal, and slow to end, prompting overshoot and
oscillations.

decreasing K; increasing K,

0 ~— — o . O n
\/ time time

- Alternative formulation: change the error in small persistent steps - over time
the steps accumulate and add up dependent on past errors;
this is the discrete-time equivalent to integration.

A' Aalto University
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D-Controller

- Aims at flattening the error trajectory into a horizontal line, damping the control
applied, and so reduces overshoot

- |deal derivative control cannot (and must not) be realized in a PID-controller.

Practical systems always contain high frequency disturbances (e.g., white
noise), which are amplified by derivative control.

- Because of that a lag term is usually added to the derivation.

. | TDi(O |
K s ! |TDI®| |]+Tnico/N|

T 1Y Kys/N .

-
@ @
- o

 Other practical modification is to derivate only the output (not the reference,
not the error signal)

-

KdS

A' Aalto University
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PID-Controller

21

= Reference
— K= 0.5
K=11

—K =16
16 a

11

T

1.5

1
reference signal

05F

1 | 1 | | | 1 1 |
0 2 4 B g 10 12 14 16 18 20

38

- Top-left: P-controller effect
(ID-controllers kept constant)

- Bottom-left: |-controller effect
(PD-controllers kept constant)

- Bottom-right: D-controller effect
(Pl-controllers kept constant)

1.5

Kd=05

05

N

reference signal

Kp=1 Ki=1 Kd=1

|
10

|
12

| 1 1
14 16 18
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Tuning PID controllers

The structure of the used discrete PID algorithm must always be told together
with the tuning parameters k,, ki, ka.

Controller design is based on heuristic design methods for selecting the
controller parameters.

The principal design goal is stability: The system is stable when the closed
loop poles are on the left-half of s-plane

Secondary criteria are, for example, rise, overshoot, settling time, and steady
state error. These can be analyzed graphically from impulse, step and ramp
responses of the close loop system

Effects of increasing a parameter independently

Parameter | Risetime | Overshoot Settling time @ Steady-state error Stability
Kp Decrease Increase | Small change Decrease Degrade
Ki Decrease Increase Increase Eliminate Degrade
Kd Minor change = Decrease Decrease No effect in theory Improve if small
3



PID-Controllers

"1 THINK You NEEDED MORE
DERIVATIVE- THAN INTEAIRAL ACTION! "

Z.

A Aalto University
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Learning outcomes

By the end of this lecture, you should be able to:

- Understand the concept of the root locus and its role in control system design
* Know how to obtain a root locus plot by sketching or using MATLAB

- Be familiar with the PID controller as a key element of many feedback systems

s
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