

Biological treatment processes of water and waste Lecture 3

WAT - E2180

Anna Mikola Professor of Practice D Sc (Tech)

Lecture outline

Introduction to biodegradability Measuring organic matter Group discussion: Bioplastics and biodegradable plastics??

Wastewater characteristics / COD fractions Toxicity DEMO on COD fractionation

Introduction to biological processes

Classification of bacteria

Bacteria game

Understand the idea of biodegradability and its impact on biological processes

Understand some possible methods to assess biodegrability

Introduction to biological processes

Biodegradability

- IUPAC definition:

Degradation caused by enzymatic process resulting from the action of cells.

- Chemical dissolution of materials by bacteria, fungi or other biological means
- Generally all organic material that serves as a nutrient for microorganisms is biodegradable = almost all organic compounds are subject to degradation.. The question is HOW FAST!!

- Biosurfactants =

 extracellular surfactants
 secreted by
 microorganisms, enhances
 the biodegradation process
- Small molecules break down faster
- Xenobiotics usually break down slowly

Time needed for biodegradation of different compounds

Product	Time to Biodegrade	Product	Time to Biodegrade	
Paper towel	2-4 weeks	Plywood	1-3 years	
Newspaper	6 weeks	Painted wooden sticks	13 years	
Apple core	2 months	Plastic bags	10-20 years	
Cardboard box	2 months	Tin cans	50 years	
Wax coated milk carton	3 months	Disposable diapers	50-100 years	
Cotton gloves	1-5 months	Plastic bottle	100 years	
Wool gloves	1 year	Aluminium cans	200 years	
		Glass bottles	Undetermined	

Aerobic and anaerobic biodegradation

- Biodegradation can take place in aerobic or anaerobic conditions
- Aerobic = presence of O_2
- Anaerobic = absence of oxygen
- Biodegradation occurs as a result of microbial growth

	CO2 + H2O + NH2+_+ BIOMASS
Biodegradation, aerobic:	andagene responden.
	microbes O2
Organic substrate + O ₂	==> CO ₂ + H ₂ O + NH ₃ ++ BIOMASS
Biodegradation, anaerob	ic:
	microbes
Orgnic substrate	===> CO ₂ + CH ₄ + NH ₃ ++ acress
18.1.2006	Tem Lauthanan

Hydrolysis

- Hydrolysis is the breakdown of a chemical bond by addition of water.
- Hydrolysis takes place when organic matter is in contact with water.
- Many microorganisms produce enzymes that catalyse the hydrolysis, e.g. proteases for proteins)
- These enzymes are selective.

$$R_1 = O_{R_2} + H_{H_1} = R_1 = O_{R_1} + R_2OH$$

Generic mechanism for a hydrolysis reaction.

Group discussion: Bioplastics and biodegradable plastics?

Seach for information about bioplastics and biodegradable plastics (5 min) Discuss in groups what these

terms actually mean (10 min)

Common discussion about your findings (5 min)

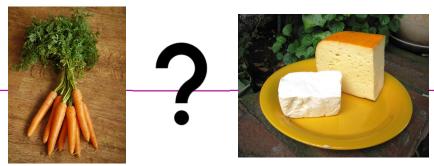
BREAK 10 min

Laitoksen nimi 03/13/2023

How do we measure organic matter

Organic matter contains all kinds of different organic substances, also living cells but \neq biomass **Organic matter = food, biomass = the ones who eat**

TOC = total organic carbon, mgC/l


(most common method catalytic oxidation)

DOC = dissolved organic matter, mgC/I

BOD = biological oxygen demand (5 or 7 days), mg O₂/l (incubation method) COD = chemical oxygen demand, mg O₂/l ThOD = theoretical oxygen demand, mgO_2/g (NOM = natural organic matter) SBCOD/RBCOD = slowly/readily

biodegradable

Laitoksen nimi 8.3.2023 9

This Photo by Unknown

Theoretical oxygen demand

- Theoretical COD is the calculated amount of oxygen needed to oxidize a compound to its final oxidation products.
- Note: some differences between standard methods on how nitrogen is dealt with.

Steps:

- Calculate the 1) carbonaceous oxygen demand in moles(based on the oxidation state of carbon)
- 2) Calculate nitrogenous oxygen demand in moles
- Calculate ThOD (gO₂/g) 3) using molar masses

Example: Calculation of ThOD

0.S.
$$z = 0 + 4 - 2$$

Org-C + $x \cdot O_2 - > C + 0 + 4 - 2$
 $z \cdot 4$

 $4-z + x^{*}(-4) = 0 = x = (4-z)/4$

Example: Ethanol

0.5.
$$+1 z -2 = 0 +4 -2 +4 -2 = 0 => z = -2$$

 $H_5C_2OH + 2x \cdot O_2 --> 2^*C O_2 + ... => x = (4-(-2))/4 = 1\frac{1}{2}$

What is the ThOD [g-O2/g-Ethanol]?

ThOD = 3^{2}^{16} g-O₂/mol / ($6^{1}+2^{12}+16$) g-Ethanol/mol = 2.8 g-O₂/g-Ethanol

Examples of different oxidation states of carbon

Substance		Oxidn. state of Carbon	х		hOD -O ₂ /g		ThOD/ TOC
Methane CH_4	H₄C	-4	2	(4*16)/(4+12)=	2	4*16/12=	5,3
Methanol H ₃ COH	H₄CO	-2	1½	(3*16)/(4+12+16)=	1½	3*16/12=	4
Formalin H ₂ CO	H ₂ CO	0	1	(2*16)/(2+12+16)=	1	2*16/12=	2,7
Formic acid HCOOH	H ₂ CO ₂	+2	1/2	16/(2+12+2*16)=	1/2	16/12=	1,3

Chemical oxygen demand COD

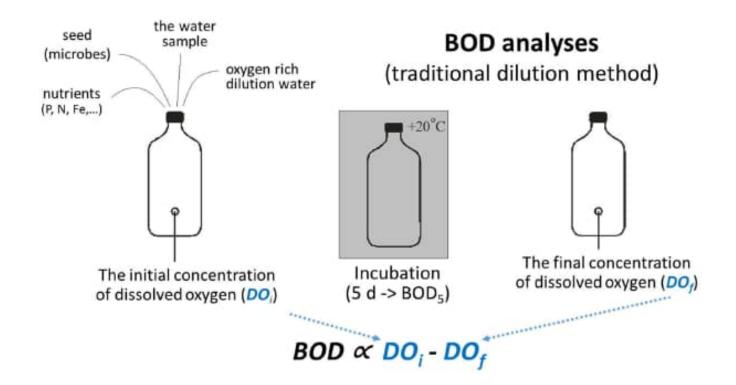
In environmental chemistry, the **chemical oxygen demand** (**COD**) test is commonly used to indirectly measure the amount of organic compounds in water. Most applications of COD determine the amount of organic pollutants found in surface water (e.g. lakes and rivers) or wastewater, making COD a useful measure of water quality. It is expressed in milligrams per liter (mg/L), which indicates the mass of oxygen consumed per liter of solution.

Potassium dichromate is a strong oxidizing agent under acidic conditions. (Acidity is usually achieved by the addition of sulfuric acid and oxidation is catalyzed by silver ions.) The reaction of potassium dichromate with organic compounds is given by:

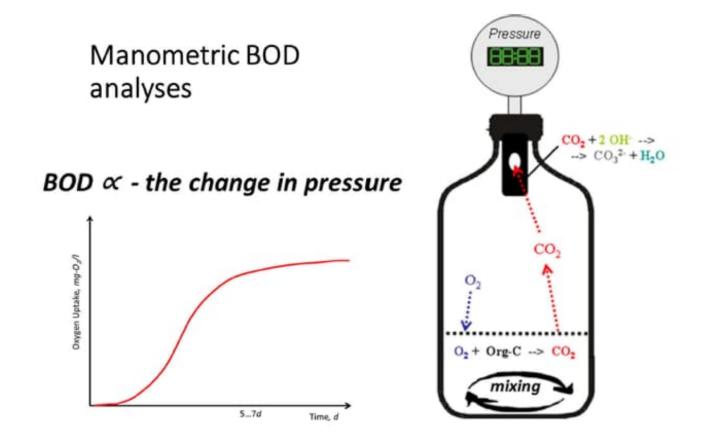
$$C_n H_a O_b N_c + dCr_2 O_7^{2-} + (8d + c)H^+ \rightarrow nCO_2 + \frac{a + 8d - 3c}{2}H_2 O + cNH_4^+ + 2dCr^{3+}$$

where d = 2n/3 + a/6 - b/3 - c/2. Most commonly, a 0.25 N solution of potassium dichromate is used for COD determination, although for samples with COD below 50 mg/L, a lower concentration of potassium dichromate is preferred.

Biological oxygen demand BOD


Biochemical oxygen demand (BOD) is the amount of dissolved oxygen used (i.e., demanded) by aerobic organisms when feeding on organic material present in a given water sample and growing at certain temperature over a specific time period. The BOD value is most commonly expressed in milligrams of oxygen consumed per litre of sample during 5 days of incubation BOD₅) at 20 °C and is often used as a surrogate of the degree of organic pollution of water. BOD can be used as a gauge of the effectiveness of wastewater treatment plants.

BOD test bottles at the laboratory of a wastewater treatment plant laboratory.


Aalto University School of Engineering

Biological oxygen demand BOD – Dilution method

Biological oxygen demand BOD – Manometric method

Example of a biodegradation process

The decomposition of a organic monochloro compound

Complete decomposition:

 $H_yC_xO_2Cl + (x-z/2+(y-1)/4)O_2 \rightarrow xCO_2 + (y-1)/2H_2O + H^{\dagger} + Cl$

Dechlorination:

$$H_{v}C_{s}O_{c}Cl + mO_{2} \rightarrow (x-n)CO_{2} + nOrg.C + Cl + ...$$

What to measure?

- Oxygen uptake, BOD
- Decrease of organic carbon
- Decrease of organic chlorine
- Increase of chloride

No dechlorination:

 $H_yC_xO_2Cl + m'O_2 \rightarrow (x-n)CO_2 + n Org.C + Org.Cl + ...$

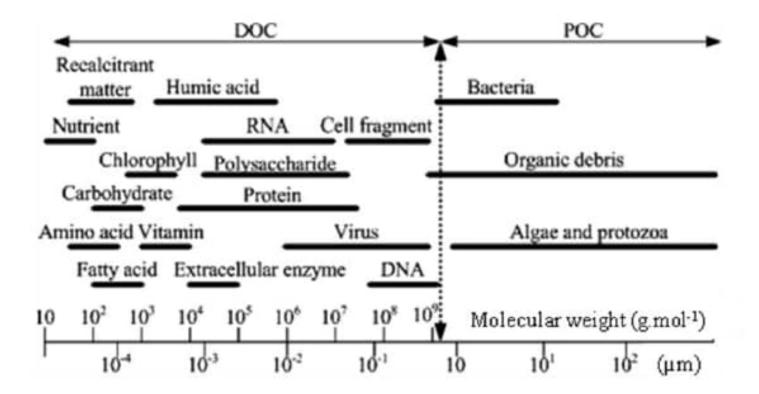
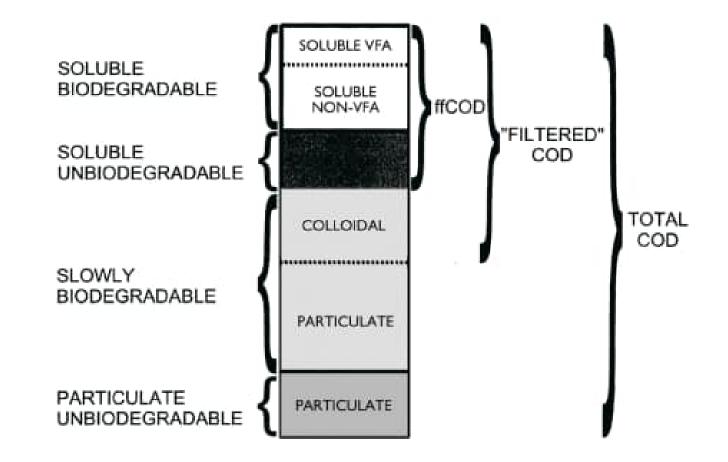
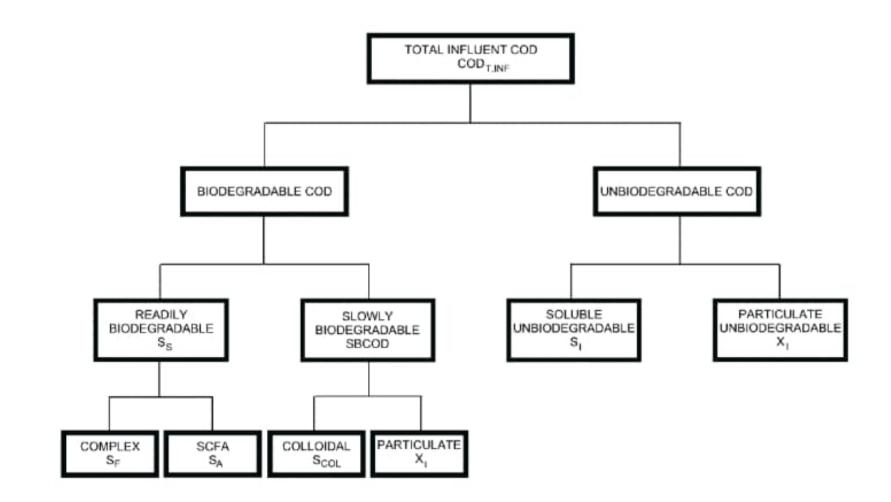



Figure 1: Organic Components in Traditional Wastewater Treatment Plant Effluent. Adapted from Shon et al. (2006).

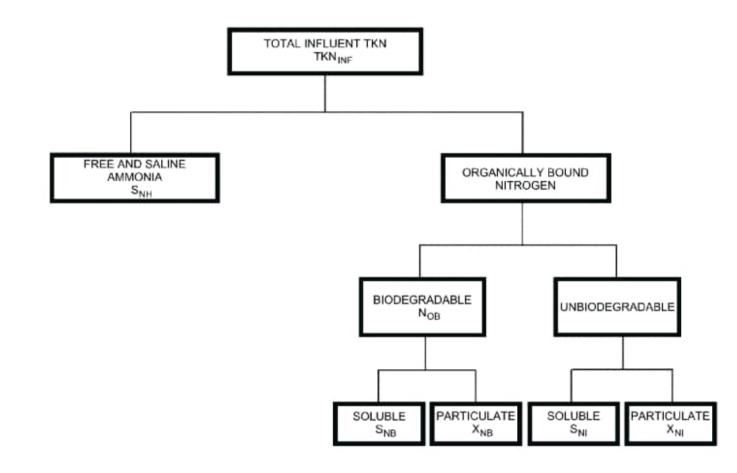
Fractionation of COD

Fractionation of COD – how do the bacteria see it ③

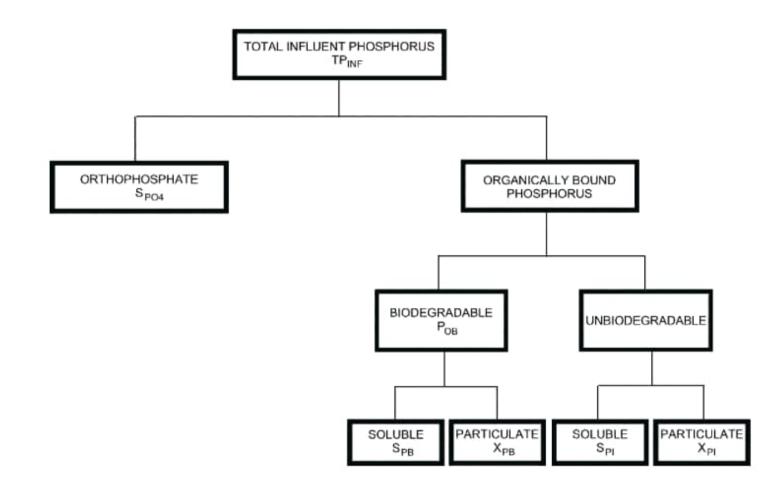


Laitoksen nimi 03/13/2023 20

Influent COD fractionation


- **TCOD** = $X_B + X_U + C_B + C_U + S_B + S_U$ Particulate Colloidal Soluble
- $\mathbf{FCOD}_{1.2\mu m} = \mathbf{C}_{\mathrm{B}} + \mathbf{C}_{\mathrm{U}} + \mathbf{S}_{\mathrm{B}} + \mathbf{S}_{\mathrm{U}}$
- **ffCOD** = $S_B + S_U (ZnSO_4 \text{ at } 10 \text{ pH using NaOH})$
- **RBCOD** = $\text{ffCOD}_{\text{Influent}} \text{ffCOD}_{\text{Final effluent}}$
- **OUR** for OHO determination

Fractionation of organic matter



Aalto University School of Engineering

Phophorus

Why is influent quality important?

- Readily biodegradable organic matter
 - Oxygen demand pattern
 - Determines process's ability to enhanced biological P removal
 - Is denitrification achieved with wastewater's own carbon source
- Unbioderadable particulate COD
 - Affects the oxygen demand
 - Affects the sludge yield

- Influent quality also affects e.g. the performance of the primary clarifier
- Biggest differences with industrial wastewater

Effect of the influent constituents

Wastewater Constituents		Reaction		Sludge Constituents		ents		
	ole	Unbiodegradable		Escapes with effluent				
	Soluble	Dissolved	Biodegradable	Transforms to active organ	-			ded
		Suspended	Unbiodegradable	Enmeshed w sludge mass	ith		/SS)	uadsns
Organic	ulate	Suspe	Biodegradable	Transforms t active organ			atile olids (V	e non
Ū	ě je	able	Unbiodegradable	Enmeshed w sludge mass	ith	(TSS)	Organic volatile settleable solids	Biomass in reactor all settleable non
		Settleable	Biodegradable	Transforms t active organ		e solids	Orgar settle	Biom all se
	ulate		Settleable	Enmeshed with		ttleable	e	ended
	Particulate		Suspended	sludge mass		otal settleable solids (TSS)	tleable	norganic mass all ettleable non susp
norganic	ganic		Precipitable	Transforms to settleable solids		Ĕ.	norganic settleabl olids (ISS)	norganic mass al ettleable non su
Inol	Soluble		Biologicaly utilizable	Transfers to	Solids		Inorganic solids (ISS	Inorga
	S				Gas	Es	capes a	as gas
			Non precipitable & Biologicaly utilizable	Escapes with	effluent			

\rightarrow ORGANIC MATTER

- → BIODEGRADABLE forms new biomass
- → UNBIODEGRADABLE
 - \rightarrow PARTICULATE goes to sludge
 - → SOLUBLE leaves with effluent

\rightarrow INORGANIC MATTER

- → PARTICULATE goes to sludge
- → SOLUBLE precipitable
 - Biologically utilizable
 - The rest escapes with effluent

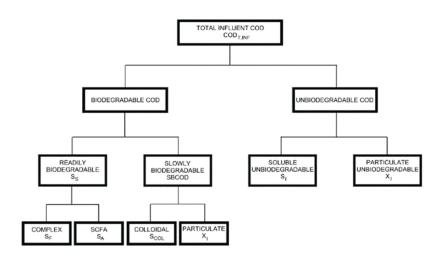
Toxicity and inhibition

- Biological processes deal with living organisms → affected by inhibitory or toxic agents
- Inhibition = impairment of the enzymatic system or damage to cell structure
- Toxic effect = inhibition is caused to a vital activity
- Inhibition can be caused by pH, temperature, redox limitations

- A medium is not either toxic or non-toxic → it's a continuum
- Acclimatisation can be used to decrease the inhibitory effects
- Ways of measuring toxicity:
 - Respirometry
 - Bioluminescence (Vibrio fischeri)
 - Many other bioassays

BREAK 10 min

Following tests have been performed with typical municipal wastewater:


Total COD = 913 mg/l Soluble COD = 657 mg/l Influent (filtered after flocculation with zinc sulfate) ffCOD = 397 mg/l Effluent (filtered after flocculation with zinc sulfate) ffCOD = 103 mg/l

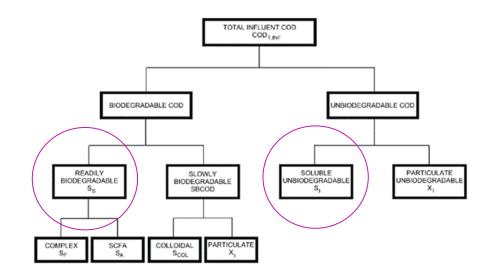
In order to estimate the biodegradable organic matter in the sample, a mixture of activated sludge from the plant (V=4,7I) and influent water (V=3,3I) was aerated during 24 hours. Total and soluble COD were measured before and after the aeration. Following results were obtained:

Total COD beginning = 1345 mg/l Soluble COD beginning = 229 mg/l Total COD end = 320 mg/l Soluble COD end = 168 mg/l

NOTE! Zinc sulfate flocculates colloids from the water. Thus, after filtration only soluble COD remains in the water.

Calculate the concentrations and fractions (%) in the influent water of:

readily (RBCOD) and slowly biodegradable(SBCOD) COD


and

soluble and particulate unbiodegradable COD.

From ffCOD we can get the soluble COD fractions (biodegradable and unbiodegradable):

```
Soluble unbiodegradable = ffCOD effluent = 103 mg/l
```

Soluble biodegradable = ffCODinf - ffCODeff = 294 mg/l

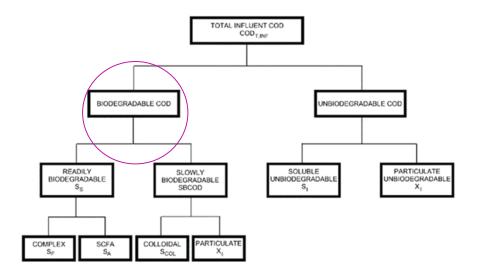
Calculate the concentrations and fractions (%) in the influent water of: readily (RBCOD) and slowly biodegradable(SBCOD) COD

and

soluble and particulate unbiodegradable COD.

To be able to continue we will calculate the total biodegradable COD from the 24 h aeration test:

Particulate COD in the WW: CODtot – CODsol = 256 mg/l

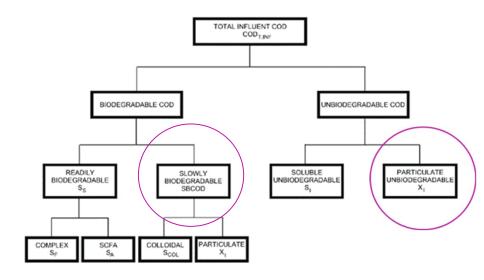

Particulate COD after addition of sludge = 1116 $mg/l \rightarrow COD$ of added sludge (in the mixture) = 860 mg/l

Then we can calculate the CODinfluent in the mixture = 1345 – 860 = 485 mg/l

Of this 168 mg/l is unbiodegradable (=soluble COD after 24 h aeration) \rightarrow biodegradable (in the mixture) = 485 - 168 = 317 mg/l

Taking into account the addition of sludge: dilution of 2,4 (from 3,3 I to 8 I) \rightarrow Total biodegradable 768 mg/l

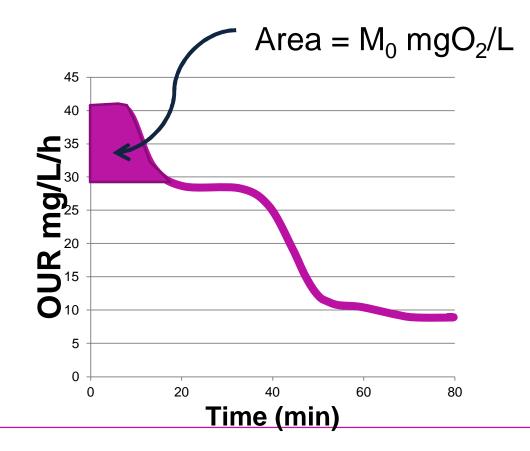
Calculate the concentrations and fractions (%) in the influent water of: readily (RBCOD) and slowly biodegradable(SBCOD) COD

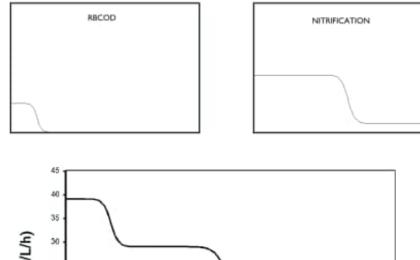

and soluble and particulate unbiodegradable COD.

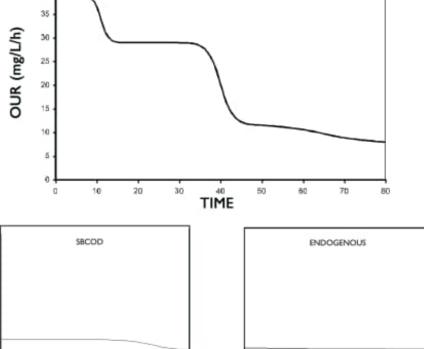
Then we will calculate the SBCOD and particulate unbiodegradable:

SBCOD = Total biodegradable – RBCOD = 768 – 294 = 474 mg/l

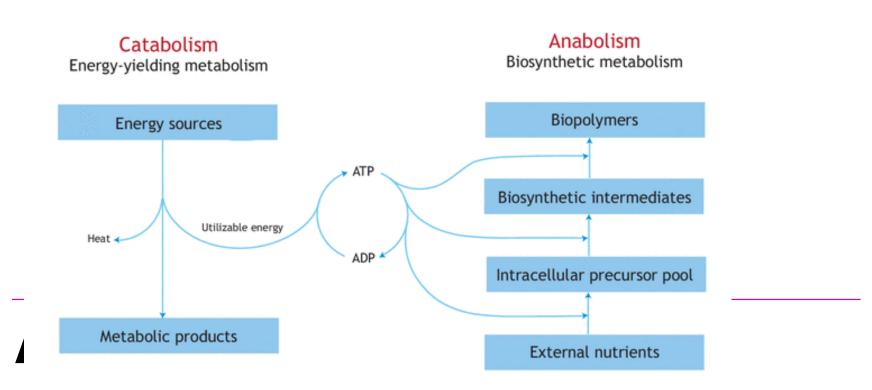
Total unbiodegradable = Total COD – biodegradable = 913 - 768 = 144 mg/l

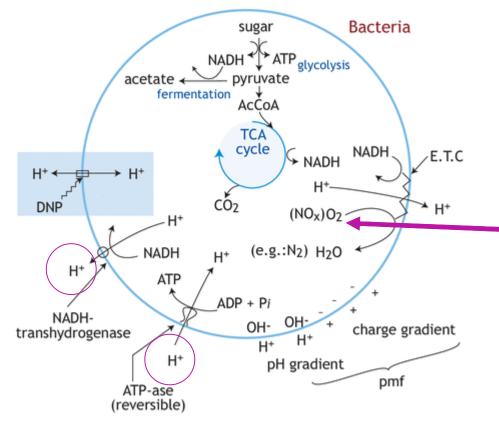

And finally particulate unbiodegradable = Total unbiodegradable – soluble unbiodegradable = 144 - 103 = 41 mg/l


Alternative for RBCOD: RBCOD measurement by respirometry


Respirogram

Components contributing to measured OUR


Introduction to biological processes


Metabolism of living cells Main requirements

Catabolism = energy supply of the cell (redox reaction) Anabolism = synthesis of cellular components from carbon sources and other nutrients

- \rightarrow Electron donor and acceptor
- \rightarrow Carbon source

How do bacteria obtain energy?

Figure 2.13 Overview of bacterial bioenergetics (adapted from Comeau *et al.,* 1986)

Main pathway for energy production in cells:

Glycolysis + Krebs cycle or TCA cycle

-Requires an electron acceptor!

You can watch a video of the TCA cycle <u>https://www.youtube.co</u> <u>m/watch?v=ubzw64PQP</u> <u>qM</u>

Classification of bacteria

Carbon source	Energy source	Relationship to oxygen	Temperature
AutotrophsHeterotrophs	 Phototrophs (Light) Lithotrophs (inorganic) Organotrophs 	AerobicAnaerobicFacultative	PsychrophilicMesophilicThermophilic
	(organic) chemical compounds	Table 2.5 Engineering de conditions	finition of some environmental Electron acceptor

Auto= self, hetero = others, photo = light, chemo = chemical, troph = nourishment, litho = inorganic, organo = organic

Condition		Electron acceptor		
		Present	Absent	
Aerobic	OX	O ₂		
Anoxic	AX	NO _x	O_2	
Anaerobic	AN		O2 and NOx	

NOx refers to nitrate (NO3) plus nitrite (NO2)

Examples of reactions

Aerobic heterotrophs: organic matter oxidation

 $C_{6}H_{12}O_{6} + O_{2} + NH_{3} + other mutrients \rightarrow$ $C_{5}H_{7}O_{2}N + CO_{2} + H_{2}O$ (2.1)

Denitrifiers: nitrate removal

 $C_6H_{12}O_6 + O_2 + HNO_3 + NH_3 + other mutrients \rightarrow C_5H_7O_2N + CO_2 + H_2O + N_2$ (2.2)

 Aerobic autotrophic bacteria (ammonia oxidizers): removal of ammonia

 $CO_2 + NH_3 + O_2 + other mutrients \rightarrow$ $C_5H_7O_2N + HNO_3 + H_2O$

• Hydrogenotrophic methanogens: biogas production $H_2 + CO_2 + NH_3 + other mutrients \rightarrow$ $C_5H_7O_2N + CH_4$ (2.5)

(2.4)

Microorganismsin water and wastewater treatment

Table 2.3 Trophic classification of microorganisms (adapted from Rittmann and McCarty, 2001; Metcalf & Eddy, 2003)

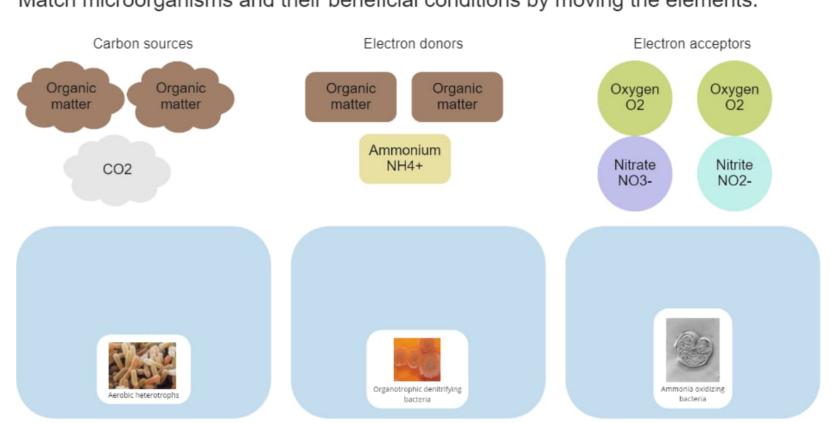
		Energy source			Carbon source1
	Electron donor		Electron acceptor	Typical products ²	
Trophic group	Microbial group	Type of e donor			
Chemotroph					
Organotroph	Aerobic heterotrophs	Organic	O ₂	CO_2, H_2O	Organic
	Denitrifiers	Organic	NO3, NO2	N ₂ , CO ₂ , H ₂ O	Organic
	Fermenting organisms	Organic	Organic	Organic:VFAs3	Organic
	Iron reducers	Organic	Fe (III)	Fe (II)	Organic
	Sulfate reducers	Acetate	SO42-	H ₂ S	Acetate
	Methanogens (acetoclastic)	Acetate	acetate	CH ₄	Acetate
Lithotroph	Nitrifiers: AOB ⁴	NH_4^+	O_2	NO ₂	CO_2
	Nitrifiers: NOB ⁵	NO ₂	O ₂	NO ₃ *	CO ₂
	Anammox ⁶ bacteria	$\mathrm{NH_4}^+$	NO ₂	N ₂	CO_2
	Denitrifiers	H ₂	NO3, NO2	N ₂ , H ₂ O	CO_2
	Denitrifiers	S	NO ₃ ⁻ , NO ₂ ⁻	N ₂ , SO ₄ ²⁻ H ₂ O	CO_2
	Iron oxidizers	Fe (II)	O_2	Fe (III)	CO_2
	Sulphate reducers	H_2	SO4 ²⁻	H ₂ S, H ₂ O	CO_2
	Sulphate oxidizers	H ₂ S, S ⁰ ,S ₂ O ₃ ²⁻	O_2	SO4 ²⁻	CO_2
	Aerobic hydrogenotrophs	H_2	O_2	H ₂ O	CO_2
	Methanogens (hydrogenotrophic)	H_2	CO ₂	CH ₄	CO ₂
Phototroph					
	Algae, plants	H ₂ O	CO ₂	O ₂	CO ₂
	Photosynthetic bacteria	H_2S	CO_2	S (0)	CO_2

¹ Carbon source: organic for heterotrophs and inorganic (CO₂) for autotrophs; mixotrophs can use both. ² Typical products: CO₂ and H₂O are products of catalysis (energy generation) by many micro-organisms. ³ VFAs: volatile fatty acids (typically acetate, propionate, butyrate). ⁴ AOB: ammonia oxidizing bacteria. ⁵ NOB: nitrite oxidizing bacteria. ⁶ Anammox: anaerobic ammonia oxidizing bacteria.

mi 23 40

Ready for BACTERIA GAME?

- Three volunteers needed for bacteria
- Others will receive cards with different chemical components
- Go around and discuss to find suitable components for each bacteria



BACTERIA GAME ALSO IN MIRO?

- You can also rehearse alone in Miro
- You can find the link in MyCourses
- Move the carbon sources and electron donors and acceptors in the game in order to create beneficial conditions for each bacteria

Game start

Match microorganisms and their beneficial conditions by moving the elements.

Laitoksen nimi

Reading material

Biological wastewater treatment:

Chapters

- 3.3 3.14
- 10.1 10.2 + 10.5

