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First lecture



O Practical issues



Information and materials

e The main information channel of the course is its MyCourses
homepage:
https://mycourses.aalto.fi/course/view.php7id=36201

e The text books are “J. Kaipio and E. Somersalo, Statistical and
Computational Inverse Problems, Springer, 2005" (mainly Chapters
2 and 3) and “D. Calvetti and E. Somersalo, Introduction to
Bayesian Scientific Computing. Ten Lectures on Subjective
Computing, Springer, 2007".

e Lecture notes and exercise sheets are posted on the course
homepage.



Lectures

e The lectures will be given according to the timetable published in
Sisu except for March 3, 27 and 31 when the lecturer is traveling.

e The lectures have also been prerecorded and can be found at
https://mycourses.aalto.fi/course/view.php7id=36201&section=1.

e Some of the practical information in the lecture recordings may be
outdated.



Exercises

e The first exercise session will held at 14-16 on Friday, March 3 in
M2 (M233).

e Each week there is one home assignment: The solution to the home
assignment in the exercise sheet of week m is to be returned via
MyCourses as instructed at
https://mycourses.aalto.fi/course/view.php?7id=36201&section=2
before the exercise session of week m + 1. (For example, the
solution to the home assignment of the first exercise paper should
be returned before the exercise session on Friday, March 10.)

e [ he course assistant will demonstrate ‘'model’ solutions to the
exercise problems.



Evaluation

The course grades will be based on the weekly home assignments and a
home exam.

e The home assignments constitute 25% of the grade. Each returned
solution is given 0 — 3 points; at the end of the course, the obtained
points will be summed and scaled appropriately.

e The home exam constitutes 75% of the grade. It will be held after
the lectures have ended — the exact timing will be agreed upon
later on. There will be four, more extensive assignments that must
be solved within a given time period (e.g., within two weeks).



Timetable

The lectures of the course extend over the weeks 9-15, i.e., Period IV
(plus the home exam).

e The first half will concentrate on traditional regularization
techniques.

e The second half will examine inverse problems from a statistical

view point.



1 What is an ill-posed problem?



Well-posed problems

Jacques Salomon Hadamard (1865-1963):
1. A solution exists.
2. The solution is unique.

3. The solution depends continuously on the data, in some reasonable
topology.



lll-posed problems

Nuutti Hyvonen: The ill-posed problems are the complement of the
well-posed problems in the space of all problems.

Examples:
e Interpolation.

e Finding the cause of a known consequence — inverse problems.

e Almost all problems encountered in everyday life.

When solving an ill-posed or inverse problem, it is essential to use all
possible prior and expert knowledge about the possible solutions.
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An example: Heat distribution in an insulated rod

et us consider the problem

Up = Uypy in (0,7) x Ry,
U (0, ) = ug(m,-) =0 on R,
u(+,0)=f on (0, ),

where u(-,t) is the heat distribution at the time ¢ > 0, f is the initial

heat distribution, and the boundary conditions indicate that the heat
cannot flow out of the 'rod’ [0, 7].

Forward problem: Determine the ‘final’ distribution (-, T) € L*(0, ),
T > 0, if the initial distribution f € L*(0,7) is known.

Inverse problem: Determine the initial distribution f € L?(0, r), if the
(noisy) ‘final’ distribution w(-,T) =: w € L?(0, ) is known.
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Forward problem

The solution to the forward problem can be given explicitly:

Z fne™™ T cos(na),

where {f,}°°, C R are Fourier cosine coefficients of the initial heat
distribution f, i.e., f =" fn cos(nz) in the sense of L2(0, ).

It is relatively easy to see that the solution operator
Er: fwu(-,T), L*0,7)— L*0,)
satisfies the following conditions:
e F7 is linear, bounded and compact.
e Fr is injective, i.e., Ker(Er) = {0}.
e Ran(FE7r) is dense in L2(0, ).
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Inverse problem

Solving the inverse problem for a general final heat distribution
w € L?(0, ) corresponds to inverting the compact operator
Er : L*(0,7) — L?(0, ), which is obviously impossible.

The unbounded solution operator
E;':Ran(Er) — L*(0,7)

is, however, well-defined. In other words, the inverse problem has a
unique solution if w = Erf for some f € L?(0,7), i.e., the
measurement contains no noise.

Summary:
e If w € Ran(FEr), the third Hadamard condition is not satisfied.
e If w ¢ Ran(Fr), none of the Hadamard conditions is satisfied.

(Due to noise etc., the latter case is usually the valid one in practice.)
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Question: Should one then ignore the ill-posed inverse problem?

Answer: No. The available measurement always contains some
information about the initial heat distribution.
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Heat distribution at t = 0,0.01,0.1,1 and 10.

0.8

0.6

0.4

0.2

15



Another heat distribution at ¢ = 0,0.01,0.1,1 and 10.
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Comparison of the two at t = 0,0.01,0.1,1 and 10.
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2 Classical regularization methods

18



2.1 Fredholm equation
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Separable Hilbert space

A vector space H is a real inner product space if there exists a mapping
(-, : H x H — R satisfying

1. (x,y) = (y,z) for all z,y € H.
2. (ax1 + bxe,y) = alxy,y) + b{xa,y) for all x1,22,y € H, a,b € R.
3. (z,2) >0,and (x,2) =0 & = =0.
Furthermore, H is a separable real Hilbert space if, in addition,
1. H is complete with respect to the norm || - || = \/(-, ).

2. There exists a countable orthonormal basis {p,, } of H with respect
to the inner product (-,-). This means that

(pj, k) =05 and x = Z(x, ©n)pn forall z e H.

n
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Fredholm equation

Let A: Hy — Hy be a compact linear operator between the real
separable Hilbert spaces H; and Hs. In the first half of this course, we
mainly concentrate on the problem of finding x € H; satisfying the
equation

Ax =y, (1)

where y € Hs is given. (In this setting, compact operators are the
closure of the finite-dimensional operators, i.e., loosely speaking
matrices, in the operator topology.)

Examples:

e In the example of Section 1, we have A = E7 and
H1 = H2 — L2(O,7T).

e The most important case on this course is H; = R", Hy, = R™ and
A € R™*™ is a matrix.

21



2.2 Truncated singular value decomposition
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Orthogonal decompositions

Let A* : Hy — Hy be the adjoint operator of A : Hy — Ho, i.e.,

(Axz,y) = (x, A*y) forall x € Hy,y € Hs.

We have the orthogonal decompositions

H, = Ker(A) @ (Ker(A)): = Ker(4) ® Ran(4*),
H, = Ran(4)® (Ran(A))* = Ran(4) @ Ker(A4*),

where the “bar” denotes the closure of a set and

Ker(A) = {x € H; | Ax =0},
Ran(A) = {ye€ Hy |y = Ax for some z € H;},
(Ker(A)*t = {x e H, | (x,2)=0forall z € Ker(A)}, etc.
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Characterization of compact operators

There exist (possible countably infinite) orthonormal sets of vectors
{vn,} C Hy and {u,} C Hs, and a sequence of positive numbers {\,},
Ak > Apr1 and lim, oo A, = 0 in the countably infinite case, such that

Ax = Z A (T, U ) U, for all x € Hy (2)

and, in particular,

Ran(A) = span{u,, } and (Ker(A))* = span{v, }.
(Conversely, if A: Hy — Hs has this kind of decomposition, it is
compact.)

The system {v,,, un, A\, } is called a singular system of A, and (2) is a
singular value decomposition (SVD) of A. (Note that 1 <n < oo or
1 <n < N < oo depending on rank(A) := dim(Ran(A)).)
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Solvability of Az =y

It follows from the orthonormality of {u,} that

P Hy = Ran(d), yr> 3 {y, wn)un,

is an orthogonal projection, i.e., P? = P and Ran(P) L Ran(I — P).

The equation Ax = y has a solution if and only if
y= Py and ZA—%y@,um < . (3)
In case that (3) is satisfied, all solutions of Ax = y are of the form
r = xo+ ; %(y,unwn
for some xy € Ker(A).
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Intuitive interpretation of the solvability conditions:

e The first condition, y = Py, states that y cannot have components
in the orthogonal complement of Ran(A) if y = Ax.

e The second condition, i.e., the convergence of the series
1
>l )
is redundant if rank(A) < oo, in which case Ran(A) = Ran(A). On

the other hand, if rank(A) = oo, this condition is equivalent to
asking that the norm of

=1
r = To+ 7;1 x{y,unwn, xg € Ker(A),
is finite, i.e., the ‘potential solutions’ belong to Hj;.
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An example: Heat distribution in a rod (revisited)

Recall the heat equation

Up = Uypy in (0,7) x Ry,
U (0, ) = ug(m,-) =0 on R,
u(-,0) = f on (0, ).

The forward solution operator
Er:fwu(,T), Hy=L*0,7)— L*(0,7) = Hy

is characterized by
ET vy, = Apvn,

where {v, }22 = {\/7} U {\/7008 )}oe, form an orthonormal basis

of L?(0,7), and A, — e T > () converges to zero as n — oc.
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In consequence, we have
00
ETf — Z >\n<fa 'Un>'Una
n=0

where the inner product of L?(0, ) is defined in the usual way:

(f.9) = /O fgdz, f,g € L*(0, ).

In this case u,, = v,, (because Er is self-adjoint). Since {v,,}2°, are an
orthonormal basis for L?(0, ), we have

(Ker(Er))* = Ran(Er) = L?(0,7),

i.e., B is injective and has a dense range, as mentioned already earlier.
In particular, the projection onto the closure of the range of Er is the
identity operator, i.e., P = 1.
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We thus deduce that there exists f € L?(0, ) such that
ETf = w,

for a given w € L?(0,7), if and only if

o 1 o
Z)\— {(w, v,)|* = 262"2T](w,vn>]2
= n=0

which is a very restrictive condition and demonstrates why this inverse
problem is extremely ill-posed.
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