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2.4 Regularization by truncated iterative
methods
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For simplicity, in the rest of Chapter 2 we will only consider the case

when

Ax = y

is a system of linear equations, i.e., A ∈ R
m×n, x ∈ R

n and y ∈ R
m.

In the literature there are lots of iterative methods for solving this kind

of matrix equations. By “iterative” we mean a method that attempts to

solve the problem by finding successive approximations for the solution,

starting from some initial guess. Typically, computation of such

iterations involves multiplications by A and its adjoint, but not explicit

computation of inverse operators. (The Gaussian elimination is an

example of the opposite: it is a direct, i.e., non-iterative, method that

tries to come up with a solution in a finite number of steps.)
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Iterative methods are sometimes the only feasible choice if the problem

involves a large number of variables (sometimes of the order of millions),

making direct methods prohibitively expensive. Iterations are especially

practical if multiplications by A are cheap. This is the case, e.g., when A

is a multi-diagonal matrix originating from a difference or element

approximation for some boundary value problem for an elliptic partial

differential operator. (There exist lots of other examples, as well.)

Although iterative solvers have not usually been designed for ill-posed

equations, they often posses regularizing properties: If the iterations are

terminated before “the solution starts to fit to noise”, one often obtains

reasonable solutions for inverse problems.
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2.4.1 Landweber–Fridman iteration
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Banach fixed point iteration

Let T : Rn → R
n be a vector-valued function. We say that S ⊂ R

n is

an invariant set for T if

T (S) ⊂ S, i.e., T (x) ∈ S for all x ∈ S.

Moreover, T is a contraction on an invariant set S if there exists

0 ≤ κ < 1 such that

‖T (x)− T (y)‖ < κ‖x− y‖ for all x, y ∈ S.

Finally, a vector x ∈ R
n is called a fixed point of T if

T (x) = x.

.
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Theorem. Let T : Rn → R
n be a contraction on the closed invariant

set S. Then there exists a unique fixed point x ∈ S of T . Furthermore,

this fixed point can be found by the following fixed point iteration:

x = lim
k→∞

xk, where xk+1 = T (xk),

for any x0 ∈ S.

Proof. The proof — although not very complicated — is omitted.
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A simple example: Consider the function T : x 7→ x2 from R to itself.

(i) Let S = [0, 1/3]. Clearly, T (S) = [0, 1/9] ⊂ S and

|T (x)− T (y)| = |x2 − y2| = |x+ y||x− y| ≤ 2/3|x− y|.

Hence, there is a unique fixed point, which is given by limx2
k

0 = 0

for every x0 ∈ S.

(ii) If S = (0, 1/3], the fixed point does not anymore lie in S.

(iii) If S = [0, 1], T (S) = S, but T is no longer a contraction:

|T (3/4)− T (1/2)| = 5/16 > 1/4 = |3/4− 1/2|.

In this case there are two fixed points: T (0) = 0 and T (1) = 1.

(iv) If, e.g., S = [0, 5/6], there is a unique fixed point 0 ∈ S, but its

existence is not predicted by the fixed point theorem since T is not a

contraction on S.
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Landweber–Fridman scheme

Instead of the original equation

Ax = y,

we will consider the normal equation

ATAx = ATy.

According to 3. exercise of 1. session, x ∈ R
n satisfies the normal

equation of and only if it minimizes the residual

‖Ax− y‖.

Moreover, there exist a unique element of Rn, given by x† := A†y, that

solves the normal equation and is orthogonal to Ker(A).

(Bear in mind, however, that the use of the pseudoinverse A† is suspect

if the matrix is ill-conditioned, i.e., if λ1/λp ≫ 1, where p = rank(A).)
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We define an affine mapping T : Rn → R
n by

T (x) = x+ β(ATy − ATAx), β ∈ R.

Notice that any solution of the normal equation is a fixed point of T .

We will show that if β is small enough there is only one fixed point of T

in Ker(A)⊥, namely x†, and it can be reached by the fixed point

iteration if x0 = 0.

Theorem. Let 0 < β < 2/λ2
1 be fixed. Then, the fixed point iteration

xk+1 = T (xk), x0 = 0,

converges towards x† as k → ∞.
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Proof. Set S = Ker(A)⊥ = Ran(AT). Clearly, T (S) ⊂ S since

T (x) = x+ AT (βy − βAx) ∈ Ran(AT)

for all x ∈ Ran(AT). Thus, S is invariant under T .

Recall that A and its transpose can be represented with the help of A’s

singular system as

Ax =

p
∑

j=1

λj(v
T
j x)uj and ATy =

p
∑

j=1

λj(u
T
j y)vj ,

where p = rank(A) and λj are the positive singular values of A. The

orthonormal sets of vectors {vj}pj=1
and {uj}pj=1

span S = Ker(A)⊥

and Ran(A), respectively. In particular,

x =

p
∑

j=1

(vTj x)vj for all x ∈ S.
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Let x, z ∈ S and note that also x− z ∈ S. We have

T (x)− T (z) = (x− z)− βATA(x− z)

=

p
∑

j=1

(vTj (x− z))vj − β

p
∑

j=1

λ2
j (v

T
j (x− z))vj

=

p
∑

j=1

(1− βλ2
j )(v

T
j (x− z))vj .

As λ1 is the largest of the singular values, it holds by assumption that

−1 < βλ2
j − 1 ≤ βλ2

1 − 1 < 2− 1 = 1, for all j = 1, . . . , p.

Hence, we see that

κ := max
j=1,...,p

|βλ2
j − 1| < 1.
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In consequence,

‖T (x)− T (z)‖2 ≤
p
∑

j=1

(1− βλ2
j )

2(vTj (x− z))2

≤ κ2

p
∑

j=1

(vTj (x− z))2 = κ2‖x− z‖2,

which shows that T is a contraction on S. As S is also a closed invariant

set for T , we know that there exists a unique fixed point of T in S.

To complete the proof, we recall that x† = A†y belongs to

S = Ker(A)⊥ and satisfies the normal equation (see exercise 3. of

session 1.). Furthermore, since x0 = 0 is in S — it is orthogonal to all

vectors —, the fixed point iteration starting from x0 converges to x†. �
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Regularization properties of Landweber–Fridman

From now on we will assume that 0 < β < 2/λ2
1.

In the third exercise session, it will be shown that the kth iterate of the

Landweber–Fridman iteration can be written explicitly:

xk =

p
∑

j=1

1

λj

(

1− (1− βλ2
j )

k
)

(uT
j y)vj , k = 0, 1, . . . . (8)

Since |1− βλ2
j | < 1 by assumption,

(1− βλ2
j )

k → 0 as k → ∞,

which is what one would expect since

x† =

p
∑

j=1

1

λj

(uT
j y)vj .
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However, while k ∈ N is finite, the coefficients of the terms (uT
j y)vj

appearing in the series representation (8) satisfy

1

λj

(

1− (1− βλ2
j )

k
)

=
1

λj

(

1−
k
∑

l=0

(

k
l

)

(−1)lβlλ2l
j

)

=
1

λj

k
∑

l=1

(

k
l

)

(−1)l+1βlλ2l
j

=
k
∑

l=1

(

k
l

)

(−1)l+1βlλ2l−1

j ,

which converges to zero as λj → 0 (for a fixed k).

As a consequence, while k is ‘small enough’, no coefficient of (uT
j y)vj in

(8) is so large that the component of the measurement noise in the

direction uj is amplified in an uncontrolled manner. (Recall that the

corresponding coefficients for Tikhonov regularization are λj/(λ
2
j + δ).)
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Discrepancy principle for Landweber–Fridman

Let the measurement y ∈ R
m be a noisy version of some underlying

‘exact’ data vector y0 ∈ R
m, and assume that

‖y − y0‖ ≈ ǫ > 0.

The Morozov discrepancy principle works for the Landweber–Fridman

iteration in approximately the same way as for the truncated SVD and

the Tikhonov regularization: Choose the smallest k ≥ 0 such that the

residual satisfies

‖y −Axk‖ ≤ ǫ.
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Such a stopping rule exists if

ǫ > ‖y − Py‖ = ‖y −A(A†y)‖,

where P = AA† (see 1. ses., 2. ex.) is the orthogonal projection onto

the range of A. Indeed, since the sequence {xk}∞k=0
converges to

x† = A†y, for any ǫ > ‖y −Ax†‖ there exists k = kǫ ∈ N such that

‖xk − x†‖ ≤ 1

‖A‖ (ǫ− ‖y −Ax†‖),

and thus by the reverse triangle inequality,

‖y −Axk‖ − ‖y −Ax†‖ ≤ ‖(y −Axk)− (y −Ax†)‖
≤ ‖A‖‖xk − x†‖
≤ ǫ− ‖y − Ax†‖,

which just means that ‖y − Axk‖ ≤ ǫ.
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An example: Heat distribution in a rod (revisited)

Recall again the discretized inverse heat conduction problem that was

discussed during the second and third lectures. Let w be the simulated

heat distribution at T=0.1 with the ‘wedge function’ as the initial data,

and A the corresponding propagation matrix A=expm(TB). We add again

the same small amount of noise to the measurement:

wn = w + 0.001*randn(N-1,1);

and use the Morozov discrepancy principle with

ǫ =
√
99 · 0.0012 ≈ 9.95 · 10−3.

Because the largest singular value of the solution operator

ET : L2(0, π) → L2(0, π) in the corresponding infinite-dimensional case

is 1, it is reasonable to anticipate that the same is also approximately

true for A. Thus, we choose β = 1 < 2/1 ≈ 2/λ2
1.
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The implementation of the Landweber–Fridman iteration with the

Morozov discrepancy principle in Matlab is straightforward. Bear in

mind, however, that matrix-matrix products are far more expensive to

compute than matrix-vector products. Hence, you should either compute

and store the product ATA before you start iterating or use parentheses

to avoid computing this product during the iteration:

flw = flw + beta*(A’*wn - A’*(A*flw));

With the particular realization of the measurement noise, the Morozov

discrepancy principle was satisfied by the iterate corresponding to

k = 5712. In the following, we visualize the evolution of the

Landweber–Fridman iteration for k = 1, 2, 7, 20, 54, 148, 403, 1096, 2980,

show the residual as a function of k, and plot the solution corresponding

to the discrepancy principle.
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