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2.4.3 Krylov subspace methods
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Krylov subspace methods

The Krylov subspace methods are iterative solvers for (large) matrix

equations of the form Ax = y, A ∈ R
n×n. Loosely speaking, such

methods try to approximate the solution vector x ∈ R
n as a linear

combination of vectors of the type u, Au, A2u etc., with some given

u ∈ R
n. If multiplication by A is cheap — e.g., if A is sparse —, the

Krylov subspace methods are especially efficient.

On this course, we only consider the most well-known Krylov subspace

method, the conjugate gradient method. Other methods of this class

include, e.g., the generalized minimal residual method (GMRES), and

the biconjugate gradient method (BiCG).
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The regularizing properties of the conjugate gradient method can be

analyzed explicitly; see, e.g., the monograph

M. Hanke, Conjugate gradient type methods for ill-posed problems,

Pitman Research Notes in Mathematics Series, 327.

However, here we content ourselves with introducing the basic ideas

behind the conjugate gradient scheme and demonstrating numerically

how application of an ‘early stopping rule’ provides reasonable solutions

for inverse problems.
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Assumptions on A and a related inner product

We assume that the system matrix A ∈ R
n×n is symmetric and positive

definite, i.e.,

AT = A and uTAu > 0 for u 6= 0.

In particular, this means that the square matrix A is injective, and

consequently invertible due to the fundamental theorem of linear

algebra. It is easy to see that the inverse A−1 ∈ R
n×n is also symmetric

and positive definite.

We define an A-dependent inner product and the corresponding norm via

〈u, v〉A = uTAv and ‖u‖A = 〈u, u〉
1/2
A .

It follows from the assumptions on A that 〈·, ·〉A : Rn × R
n → R really

is an inner product on R
n, and consequently ‖ · ‖A : Rn → R is a norm.
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The error, the residual and a minimization problem

Let x∗ = A−1y ∈ R
n be the unique solution of the equation

Ax = y

for a given y ∈ R
n. We define the error and the residual corresponding

to some approximative solution x ∈ R
n by

e = x∗ − x and r = y −Ax = Ae.

Let φ : Rn → R be the A-dependent quadratic functional

φ(x) = ‖e‖2A = eTAe = rTA−1r = ‖r‖2A−1 .

Since ‖ · ‖A is a norm, φ(x) is non-negative and equals zero if and only if

e = 0 ⇐⇒ x = x∗.

Hence, minimizing φ is equivalent to solving the original equation.
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Minimizing φ in a given direction

Evaluating φ would require the knowledge of x∗ or, equivalently, that of

A−1; since our ultimate goal is to approximate the solution x∗

iteratively, assuming it known is not a feasible option.

Fortunately, if we have some initial guess x0 ∈ R
n and some search

direction 0 6= s0 ∈ R
n, we can find the minimizer of φ over the line

S0 = {x ∈ R
n | x = x0 + αs0, α ∈ R}

without knowing x∗.
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Lemma. The function

α 7→ φ(x0 + αs0), R → R,

attains its minimum at

α = α0 :=
sT0 r0
‖s0‖2A

=
sT0 r0
sT0 As0

,

where r0 is the residual corresponding to the initial guess:

r0 = y −Ax0.
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Proof. The residual corresponding to x = x0 + αs0 is

r = y − Ax = y −Ax0 − αAs0 = r0 − αAs0.

In consequence,

φ(x) = rTA−1r

= (r0 − αAs0)
TA−1(r0 − αAs0)

= α2sT0 As0 − 2αsT0 r0 + rT0 A
−1r0,

which, as a function of α, is a parabola that opens upwards, because

sT0 As0 > 0. Hence, its minimum is at the unique zero of the derivative

with respect to α, i.e., at α = α0. �
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About the choice of the search directions

Given a sequence of (non-zero) search directions {sk} ⊂ R
n, we can

thus produce a sequence of approximate solutions by first choosing x0

and then finding iteratively the minimizer of φ on the line passing

through xk in the direction sk as follows:

xk+1 = xk + αksk, with αk =
sTk rk
sTkAsk

, k = 0, 1, . . . ,

where rk is the residual corresponding to the kth iterate, i.e.,

rk = y −Axk.

Notice that {φ(xk)} is a decreasing sequence of real numbers because

φ(xk+1) is always smaller than — or as small as — φ(xk).

However, an efficient choice of the search directions {sk} is a subtle

issue.
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Probably, one of the first ideas that comes to mind is to choose

sk = −∇φ(xk) = 2(y −Axk), k = 0, 1, . . . ,

because it gives the direction of the steepest descent. However, this does

not in general provide a sequence {xk} that converges fast towards the

global minimizer x∗ = A−1y, as demonstrated by the following example:

Let

A =





1 0

0 5



 and y =





0

0



 ,

which means, in particular, that

φ(x) = φ(x(1), x(2)) = (x(1))2 + 5(x(2))2.

The following image shows level contours of φ and the sequence

{xk}
9
k=0 starting from x0 = (1, 0.3)T. The actual solution x∗ = (0, 0)T

is marked with an asterisk.
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Minimizing φ over a hyperplane

Let {s0, . . . , sk} be a set of linearly independent search direction. Next,

we consider finding the minimizer of φ on the hyperplane

Sk = {x ∈ R
n | x = x0 + Skh, h ∈ R

k+1},

where x0 ∈ R
n is the initial guess and Sk = [s0, . . . , sk] ∈ R

n×(k+1).

Lemma. The function

h 7→ φ(x0 + Skh), R
k+1 → R,

attains its minimum at

h = h∗ = (ST
k ASk)

−1ST
k r0,

where r0 = y −Ax0 is the residual corresponding to the initial guess.
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Proof. Let us first prove that ST
k ASk ∈ R

(k+1)×(k+1) is invertible: Due

to the positive definiteness of A, we have

ST
k ASkz = 0 =⇒ zTST

k ASkz = 0 =⇒ Skz = 0,

which means that z = 0 since the columns of Sk are linearly

independent. Hence, Ker(ST
k ASk) = {0}, i.e., ST

k ASk is injective, and

thus (ST
k ASk)

−1 exists by the fundamental theorem of linear algebra.

The residual corresponding to x = x0 + Skh satisfies

r = y −A(x0 + Skh) = r0 −ASkh,

and thus

φ(x0 + Skh) = (r0 −ASkh)
TA−1(r0 − ASkh)

= hTST
k ASkh− 2rT0 Skh+ rT0 A

−1r0.
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In particular, the coefficient matrix ST
k ASk of the quadratic term of

φ(x0 + Skh) in h is positive definite:

uT(ST
k ASk)u = (Sku)

TA(Sku) ≥ 0, u ∈ R
k+1,

where the equality holds if and only if Sku = 0, i.e., u = 0. Thus, the

basics of quadratic programming tell us that the unique zero of the

gradient of φ(x0 + Skh) with respect to h, i.e.,

h∗ = (ST
k ASk)

−1ST
k r0,

is the unique minimizer of φ(x0 + Skh) over h ∈ R
k+1. �
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A-conjugate search directions

Since finding the minimizer of φ over the hyperplane

Sk = {x ∈ R
n | x = x0 + Skh, h ∈ R

k+1}

involves inverting a (k + 1)× (k + 1) matrix, such an approach is not

necessarily very attractive.

On the other hand, as demonstrated by the numerical example above,

minimizing φ sequentially in the directions s0, . . . , sk does not, in

general, result in as good approximate solution as doing the

minimization over the whole hyperplane Sk at once. (Clearly, the first

two search directions of the numerical example were linearly

independent, and thus minimization over the hyperplane S2, i.e., the

whole R
2, would have given the global minimizer x∗ = (0, 0)T.)

However, the sequential minimization does produce the minimizer over

Sk if the search directions {s0, . . . , sk} are chosen in a clever way.

123



We say that non-zero vectors {s0, . . . , sk} ⊂ R
n are A-conjugate if

〈si, sj〉A = sTi Asj = 0

for i 6= j. In other words, the vectors {s0, . . . , sk} are A-conjugate if

they are orthogonal with respect to the inner product 〈·, ·〉A.

The A-conjugacy condition can be expressed neatly with the help of the

matrix Sk = [s0, . . . , sk] ∈ R
n×(k+1):

ST
kASk =











sT0
...

sTk











[As0, . . . , Ask] = diag(d0, d1 . . . , dk) ∈ R
(k+1)×(k+1),

where dj = sTj Asj > 0, j = 0, . . . , k, due to the positive definiteness of

the matrix A.
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The following theorem demonstrates that it is useful to choose the

search directions to be A-conjugate.

Theorem. Let x0 ∈ R
n be an initial guess and assume that the vectors

{s0, . . . , sk} ⊂ R
n are non-zero and A-conjugate. Then, the sequential

minimizer of φ over these directions, i.e., xk+1 ∈ R
n obtained by the

iteration

xj+1 = xj + αjsj , with αj =
sTj rj

sTj Asj
, j = 0, . . . , k,

is the minimizer of φ on the hyperplane

Sk = {x ∈ R
n | x = x0 + Skh, h ∈ R

k+1}.

To put it short,

xk+1 = x0 + Skh∗ = x0 + Sk(S
T
k ASk)

−1ST
k r0.
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Proof. Let aj = (α0, . . . , αj)
T ∈ R

j+1. With this notation we have

xj = x0 +

j−1
∑

i=0

αisi = x0 + Sj−1aj−1, j = 1, . . . , k + 1.

Moreover the residual corresponding to xj is

rj = y −Axj = (y −Ax0)−ASj−1aj−1 = r0 −ASj−1aj−1.

In particular,

sTj rj = sTj r0 − sTj ASj−1aj−1 = sTj r0 + sTj [As0, . . . , Asj−1]aj−1,

where the last term vanishes since sj is A-conjugate to {s0, . . . , sj−1}.
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Hence,

αj =
sTj rj

sTj Asj
=

sTj r0

sTj Asj
, j = 0, . . . , k.

On the other hand, since {s0, . . . , sk} are A-conjugate, we have

(ST
k ASk)

−1 =
(

diag(sT0 As0, . . . , s
T
kAsk)

)−1

= diag(1/(sT0 As0), . . . , 1/(s
T
kAsk)),

which means that

h∗ = (ST
k ASk)

−1ST
k r0 = (ST

k ASk)
−1











sT0 r0
...

sTk r0











=











α0

...

αk











.

Consequently, ak = h∗ and

xk+1 = x0 + Skak = x0 + Skh∗. �
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A useful corollary about the residuals

If the search directions are chosen to be A-conjugate, we have also extra

information about the residuals:

Corollary. If the non-zero search directions {sj}
k
j=0 ⊂ R

n are

A-conjugate, then the residual rk+1 = y −Axk+1 satisfies

rk+1 ⊥ span{s0, . . . , sk},

where the orthogonality is in the sense of the standard inner product.

Proof. Since xk+1 = x0 + Skh∗, it holds that

rk+1 = (y − Ax0)−ASkh∗ = r0 −ASkh∗.

In consequence,

[rTk+1s0, . . . , r
T
k+1sk] = rTk+1Sk = rT0 Sk − hT

∗
ST
k ASk = 0

because hT
∗
= ((ST

k ASk)
−1ST

k r0)
T = rT0 Sk(S

T
k ASk)

−1.
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How to construct A-conjugate search directions?

There are many ways to construct a set of A-conjugate search

directions. If one chooses to use Krylov subspaces the result is the

conjugate gradient algorithm:

Definition: The kth Krylov subspace of A with the initial vector

r0 = y −Ax0 is defined as

Kk = K(A, r0) = span{r0, Ar0, . . . , A
k−1r0}, k = 1, 2, . . . .

Note, in particular, that A(Kk) ⊂ Kk+1.

Take also note that Kk−1 ⊂ Kk, where the dimension of the latter is at

most k, and it is at most one higher than that of the former. (For

example, if r0 is an eigenvector of A, then the vectors spanning Kk are

scalar multiples of each other, which means that dim(Kk) = 1 for all

k ≥ 1. Fortunately, it turns out that this is not a hindrance.)
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The logic of the conjugate gradient algorithm

Let us construct a sequence of A-conjugate search directions inductively.

The leading idea is that, given a set of A-conjugate search direction, we

can either find a new A-conjugate direction or the previous iterate is

already the global minimizer x∗, i.e., the unique solution of Ax = y.

1. Choose an initial guess x0 ∈ R
n.

2. If r0 = y −Ax0 = 0, we have found the solution x∗ = x0. Otherwise,

set s0 = r0 (, which is, by the way, the steepest descent direction).

Note, in particular, that the set of a single search direction {s0} is

trivially A-conjugate and

K1 = span{s0} = span{r0}.
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3. Suppose that we have non-zero and A-conjugate search directions

{sj}
k−1
j=0 , k ≥ 1, such that

Km = span{s0, . . . , sm−1} = span{r0, . . . , rm−1}, m = 1, . . . , k,

(9)

where rj = y −Axj , j = 0, . . . , k − 1, are the residuals corresponding to

the iterates {xj}
k−1
j=0 of the sequential minimization algorithm.

If rk = 0, the algorithm has converged to x∗ = xk. Otherwise, we try to

choose another A-conjugate and non-zero search direction sk ∈ R
n so

that (9) remains valid if k is replaced by k + 1.

131



Assume thus that rk 6= 0. Since

rk = y −Axk = y −A(xk−1 + αk−1sk−1) = rk−1 − αk−1Ask−1

and rk−1 and sk−1 belong by assumption to Kk, the new residual rk
belongs to Kk+1. Since rk is orthogonal to {s0, . . . , sk−1}, which span

Kk and belong to Kk+1, we must have

Kk+1 = span{s0, . . . , sk−1, rk} = span{r0, . . . , rk−1, rk}.

Let us try to find the new search direction sk in the form

sk = rk + βk−1sk−1, βk−1 ∈ R.

Note that this kind of vector belongs to Kk+1 and, furthermore,

Kk+1 = span{s0, . . . , sk−1, rk} = span{s0, . . . , sk−1, sk}.

Consequently, all we have to worry about is the A-conjugacy condition:
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We want to choose βk−1 ∈ R
k so that

sTj Ask = sTj Ark + βk−1s
T
j Ask−1

= (Asj)
Trk + βk−1s

T
j Ask−1 = 0 (10)

for j = 0, . . . , k − 1. Because {s0, . . . , sk−2} ⊂ Kk−1, we have

{As0, . . . , Ask−2} ⊂ Kk = span{s0, . . . , sk−1},

and thus the vectors {As0, . . . , Ask−2} are orthogonal to rk. Hence, the

A-conjugacy of {s0, . . . , sk−1} yields that only the last of the equations

(10) is non-trivial.

Solving this equation for βk−1 results in the needed update rule

sk = rk + βk−1sk−1, βk−1 = −
sTk−1Ark

sTk−1Ask−1
.
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