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Discontinuities

Prior information: The unknown is a function of, say, time. It is known

to be relatively stable for long periods of time, but contains now and

then discontinuities. We may also have information on the size of the

jumps or the rate of occurrence of the discontinuities.

A more concrete example: Unknown is a function f : [0, 1] → R. We

know that f(0) = 0 and that the function may have large jumps at a few

locations.

After discretizing f , impulse priors can be used to construct a prior on

the finite difference approximation of the derivative of f .
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Discretization of the interval [0, 1]: Choose grid points tj = j/N ,

j = 0, . . . , N , and set xj = f(tj).

We write a Cauchy-type prior density

πpr(x) =
(α

π

)N
N
∏

j=1

1

1 + α2(xj − xj−1)2

that controls the jumps between the adjacent components of x ∈ R
N+1.

In particular, the components of X are not independent. (In addition to

this prior, we know that X0 = x0 = 0.)

To make draws from the above density, we define new variables

ξj = xj − xj−1, 1 ≤ j ≤ N,

which are the changes in the function of interest between adjacent grid

points.
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Notice that x̃ = [x1, . . . , xN ]T ∈ R
N satisfies

x̃ = Aξ,

where A ∈ R
N×N is a lower triangular matrix such that Ajk = 1 for

j ≥ k. Hence, it follows, e.g., from the change of variables rule for

probability densities that

πpr(ξ) =
(α

π

)N
N
∏

j=1

1

1 + α2ξ2j
.

In particular, due to the product form of πpr(ξ), the components of Ξ

are mutually independent, and can thus be drawn from a

one-dimensional Cauchy density.

Subsequently, a random draw from the distribution of X can be

constructed by recalling that x0 = 0 and using the relation x̃ = Aξ.

253



0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

0 0.2 0.4 0.6 0.8 1
−500

−400

−300

−200

−100

0

100

254



Sample-based densities

Assume that we have a large sample of realizations of a random variable

X ∈ R
n:

S = {x1, x2, . . . , xN}.

One way to construct a prior density for X is to approximate π(x) based

on S.

Estimates of the mean and the covariance:

E{X} ≈
1

N

N
∑

j=1

xj =: x̄,

cov(X) = E{XXT} − E{X}E{X}T ≈
1

N

N
∑

j=1

xj(xj)T − x̄x̄T =: Γ.

(Notice that Γ is not the unbiased sample covariance estimator, but let

us anyway follow the notation of the text book.)
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The eigenvalue decomposition of Γ is

Γ = UDUT,

where U ∈ R
n×n is orthogonal and has the eigenvectors of Γ as its

columns, and D ∈ R
n×n is diagonal with the eigenvalues

d1 ≥ . . . ≥ dn ≥ 0 as its diagonal entries. (Note that Γ is clearly

symmetric and positive semi-definite, and thus it has a full set of

eigenvectors with non-negative eigenvalues.)

The vectors xj , j = 1, . . . , N , are typically ‘somewhat similar’ and the

matrix Γ can consequently be singular or almost singular: The

eigenvalues often satisfy dj ≈ 0 for j > r, where 1 < r < n is some

cut-off index. In other words, the difference X − E{X} does not seem

to vary much in the direction of the eigenvectors ur+1, . . . , un.
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Assume this is the case. Then, one can postulate that the values of the

random variable X − E(X) lie ‘with a high probability’ in the subspace

spanned by the first r eigenvectors of Γ. One way of trying to state this

information quantitatively, is to introduce a subspace prior

π(x) ∝ exp
(

−α‖(I − P )(x− x̄)‖2
)

,

where P is the orthogonal projector Rn → span{u1, . . . , ur}. The

parameter α > 0 controls how much X − x̄ is allowed to vary from the

subspace span{u1, . . . , ur}. (Take note that such a subspace prior is not

a probability density in the traditional sense.)
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If Γ is not almost singular, the inverse Γ−1 can be computed stably. In

this case, the most straightforward way of approximating the (prior)

probability density of X is to introduce the Gaussian approximation:

πpr(x) ∝ exp

(

−
1

2
(x− x̄)TΓ−1(x− x̄)

)

.

Depending on the higher order statistics of X , this may or may not

provide a good approximation for the distribution of X .
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Posterior density and a simple linear model

Consider a linear system of equations with noisy right hand side,

y = Ax+ e, x ∈ R
n, y, e ∈ R

m, A ∈ R
m×n.

The corresponding stochastic extension reads

Y = AX + E,

where X , Y and E are random variables.

A very common assumption: X and E are independent and Gaussian,

X ∼ N (0, γ2Γ), E ∼ N (0, σ2I),

where we have assumed that both X and E have zero mean. (If this

was not the case, the means could be subtracted from the respective

random variables.)
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The covariance of the noise indicates that the components of Y are

contaminated by independent and identically distributed Gaussian

random variables of variance σ2. On the other hand, the prior

distribution of X is assumed to have a bit more structure: Γ need not be

diagonal and the parameter γ2 is introduced for controlling the

‘magnitude’ of the (prior) covariance.

In other words, the prior density is of the form

πpr(x) ∝ exp

(

−
1

2γ2
xTΓ−1x

)

,

and assuming that the noise level σ2 is known, the likelihood function

reads as

π(y |x) ∝ exp

(

−
1

2σ2
‖y −Ax‖2

)

.
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It follows from the Bayes formula that the posterior density is

π(x | y) ∝ πpr(x)π(y |x)

∝ exp

(

−
1

2γ2
xTΓ−1x−

1

2σ2
‖y −Ax‖2

)

= exp(−V (x | y)),

where

V (x | y) =
1

2γ2
xTΓ−1x+

1

2σ2
‖y −Ax‖2.

261



If Γ is symmetric and positive definite, so is Γ−1. Hence, we can

introduce a Cholesky factorization:

Γ−1 = RTR.

With this notation,

xTΓ−1x = xTRTRx = ‖Rx‖2,

and we define

T (x) = 2σ2V (x | y) = ‖y −Ax‖2 + δ‖Rx‖2, δ :=
σ2

γ2
.

The functional T is sometimes referred to as the Tikhonov functional.
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Recall that the maximum a posteriori (MAP) estimator maximizes the

posterior probability density of the unknowns:

xMAP = arg max
x∈Rn

π(x | y).

In our setting,

xMAP = argminV (x | y) because V (x | y) = − log π(x | y).

With the help of the Tikhonov functional, this reads

xMAP = argmin T (x) = argmin
(

‖y −Ax‖2 + δ‖Rx‖2
)

.

Recall that the Tikhonov regularized solution of y = Ax — with the

penalty term ‖Rx‖ — is the minimizer of T (x). In consequence, the

Tikhonov regularized solution and xMAP coincide if the regularization

parameter is chosen to be δ = σ2/γ2.
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n-variate Gaussian densities
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Definition. Let

Γ =





Γ11 Γ12

Γ21 Γ22



 ∈ R
n×n

be a positive definite and symmetric matrix, with Γ11 ∈ R
k×k, k < n,

Γ22 ∈ R
(n−k)×(n−k), and Γ21 = ΓT

12 ∈ R
(n−k)×k. We define the Schur

complement Γ̃jj of Γjj , j = 1, 2, by the formulas

Γ̃22 = Γ11 − Γ12Γ
−1
22 Γ21, Γ̃11 = Γ22 − Γ21Γ

−1
11 Γ12

Observe that the definition of Γ implies that Γjj , j = 1, 2, are

symmetric, positive definite and, in particular, invertible. In

consequence, the Schur complements are well defined and symmetric.
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Lemma. Let Γ be a matrix that satisfies the assumptions of the

previous definition. Then, the Schur complements Γ̃jj , j = 1, 2, are

invertible matrices and, furthermore,

Γ−1 =





Γ̃−1
22 −Γ̃−1

22 Γ12Γ
−1
22

−Γ̃−1
11 Γ21Γ

−1
11 Γ̃−1

11



 .
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Proof: We prove first that the Schur complements are invertible:

Consider the determinant of Γ,

|Γ| =

∣

∣

∣

∣

∣

∣

Γ11 Γ12

Γ21 Γ22

∣

∣

∣

∣

∣

∣

6= 0.

By subtracting the first row multiplied by Γ21Γ
−1
11 from the second one,

we find that

|Γ| =

∣

∣

∣

∣

∣

∣

Γ11 Γ12

0 Γ22 − Γ21Γ
−1
11 Γ12

∣

∣

∣

∣

∣

∣

= |Γ11||Γ̃11|,

implying that |Γ̃11| 6= 0. In the same way, we can also show that

|Γ̃22| 6= 0.
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The proof of the second assertion of the lemma follows from the

Gaussian elimination: Consider the linear system




Γ11 Γ12

Γ21 Γ22









x1

x2



 =





y1

y2



 .

By solving for x2 in the second equation, we get

x2 = Γ−1
22 (y2 − Γ21x1).

Substituting this formula into the first equation, then gives us

(Γ11 − Γ12Γ
−1
22 Γ21)x1 = y1 − Γ12Γ

−1
22 y2,

or equivalently

x1 = Γ̃−1
22 y1 − Γ̃−1

22 Γ12Γ
−1
22 y2,

which verifies the first row of claimed representation of Γ−1. The second

row of the representation follows by reversing the roles of x1 and x2.
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Remark: Since Γ is a symmetric matrix, so is Γ−1. In consequence, we

have the identity

Γ̃−1
11 Γ21Γ

−1
11 = (Γ̃−1

22 Γ12Γ
−1
22 )

T = Γ−1
22 Γ21Γ̃

−1
22 .
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Theorem. Let X ∈ R
n and Y ∈ R

m be two Gaussian random variables

whose joint probability density π : Rn × R
m → R+ is of the form

π(x, y) ∝ exp






−
1

2





x− x0

y − y0





T 



Γ11 Γ12

Γ21 Γ22





−1 



x− x0

y − y0










.

Then, the probability density of X conditioned on Y = y, i.e.,

π(x | y) : Rn → R+, is of the form

π(x | y) ∝ exp

(

−
1

2
(x− x̄)TΓ̃−1

22 (x− x̄)

)

,

where

x̄ = x0 + Γ12Γ
−1
22 (y − y0).
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Proof: For simplicity, let us assume that x0 = 0 and y0 = 0.

Due the representation of the joint covariance matrix Γ−1 provided by

the previous Lemma and the remark that followed, we may write

π(x, y) ∝ exp

(

−
1

2

(

xTΓ̃−1
22 x− 2xTΓ̃−1

22 Γ12Γ
−1
22 y + yTΓ̃−1

11 y
)

)

= exp

(

−
1

2

(

(x− Γ12Γ
−1
22 y)

TΓ̃−1
22 (x− Γ12Γ

−1
22 y) + c

)

)

,

where c = yT(Γ̃−1
11 − Γ−1

22 Γ21Γ̃
−1
22 Γ12Γ

−1
22 )y. Hence, it follows that

π(x | y) ∝ π(x, y) ∝ exp

(

−
1

2
(x− Γ12Γ

−1
22 y)

TΓ̃−1
22 (x− Γ12Γ

−1
22 y)

)

,

where the proportionality constants depend on y but not on x. This

proves the claim. �
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Theorem. Let X and Y be Gaussian random variables with a joint

probability density as in the previous theorem. Then, the marginal

density of X is

π(x) =

∫

Rm

π(x, y)dy ∝ exp

(

−
1

2
(x− x0)

TΓ−1
11 (x− x0)

)

.

Proof: The proof is slightly more complicated than the previous one. It

can be found in the textbook by Kaipio and Somersalo.
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Linear inverse problem

Assume that we have a linear model with additive noise,

Y = AX + E,

where A ∈ R
m×n is a known matrix, and X ∈ R

n and Y,E ∈ R
m are

random variables. Assume furthermore that X and E are mutually

independent Gaussian variables with probability densities

πpr(x) ∝ exp

(

−
1

2
(x− x0)

TΓ−1
pr (x− x0)

)

,

and

πnoise(e) ∝ exp

(

−
1

2
(e− e0)

TΓ−1
noise(e− e0)

)

.
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With this information, we get from the Bayes formula that the posterior

distribution of X conditioned on Y = y is

π(x | y) ∝ πpr(x)π(y |x) = πpr(x)πnoise(y −Ax)

∝ exp

(

−
1

2
(x− x0)

TΓ−1
pr (x− x0)−

1

2
(y −Ax− e0)

TΓ−1
noise(y −Ax− e0)

)

The explicit form of this posterior distribution, i.e., the form that shows

the posterior mean and covariance explicitly, can be calculated in a

straightforward but tedious manner by ‘completing the squares’ with

respect to x. However, we may also use the first of the two theorems

presented on the previous few slides.
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Since X and E are Gaussian, so is Y , and we have

E











X

Y











=





x0

y0



 , y0 = Ax0 + e0

Furthermore, using the fact that X and E are independent, we deduce

that

E
{

(X − x0)(X − x0)
T
}

= Γpr,

E
{

(Y − y0)(Y − y0)
T
}

=E
{

(

A(X−x0)+(E−e0)
)(

A(X−x0)+(E−e0)
)T

}

= AΓprA
T + Γnoise,

E
{

(X − x0)(Y − y0)
T
}

= E
{

(X − x0)
(

A(X − x0) + (E − e0)
)T

}

= ΓprA
T.
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Hence, we get

cov





X

Y



 = E















X − x0

Y − y0









X − x0

Y − y0





T










=





Γpr ΓprA
T

AΓpr AΓprA
T + Γnoise



 .

The joint probability density of X and Y is thus of the form

π(x, y) ∝ exp






−
1

2





x− x0

y − y0





T 



Γpr ΓprA
T

AΓpr AΓprA
T + Γnoise





−1 



x− x0

y − y0










.

Using the first of the above two theorems, we can thus write the

posterior density of X conditioned on Y = y.
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Theorem. Assume that X ∈ R
n and E ∈ R

m are mutually independent

Gaussian random variables,

X ∼ N (x0,Γpr), E ∼ N (e0,Γnoise)

and Γpr ∈ R
n×n and Γnoise ∈ R

m×m are positive definite. Assume

further that we have a linear model Y = AX + E for a noisy

measurement Y , where A ∈ R
m×n is a known matrix. Then, the

posterior probability density of X given the measurement Y = y is

π(x | y) ∝ exp

(

−
1

2
(x− x̄)TΓ−1

post(x− x̄)

)

,

where

x̄ = x0 + ΓprA
T(AΓprA

T + Γnoise)
−1(y −Ax0 − e0),

and

Γpost = Γpr − ΓprA
T(AΓprA

T + Γnoise)
−1AΓpr.
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Remark: It holds that

Γpr − Γpost = ΓprA
T(AΓprA

T + Γnoise)
−1AΓpr,

which is a positive semi-definite matrix. Loosely speaking, this means

that the prior density is wider than the posterior, i.e., the measurement

decreases the uncertainty in the whereabouts of X .

Remark: As already mentioned, the explicit forms of the mean and the

covariance of the Gaussian posterior density for this linear model can

also be derived directly. This way we get alternative representations for

the posterior covariance matrix

Γpost = (Γ−1
pr + ATΓ−1

noiseA)
−1

and the posterior mean

x̄ = Γpost(A
TΓ−1

noise(y − e0) + Γ−1
pr x0).
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Gaussian white noise prior and Tikhonov regularization

Consider the simple Gaussian white noise prior case, X ∼ N (0, γ2I),

and assume also that the noise is white noise, i.e., E ∼ (0, σ2I). In this

particular case the mean of the posterior distribution given by the above

theorem turns into

x̄ = γ2AT(γ2AAT + σ2)−1y = AT(AAT + δI)−1y,

where δ = σ2/γ2.

It can be shown that this form is equivalent to the Tikhonov regularized

solution

xδ = (ATA+ δI)−1ATy,

which is not very surprising, as we have already deduced at the previous

lecture that xMAP = xδ for δ = σ2/γ2 and, on the other hand,

xCM = xMAP for a Gaussian posterior distribution.
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