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Improper Gaussian priors
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Motivation: Smoothness priors

Recall from the previous lecture that finding the maximum a posteriori

(MAP) — or conditional mean (CM) — estimate for the linear inverse

problem

Y = AX + E, Y,E ∈ R
m, X ∈ R

n,

where X and E are independent and Gaussian with zero mean,

X ∼ N (0,Γ), E ∼ N (0, σ2I),

is equivalent to minimizing the Tikhonov functional

T (x) = ‖y −Ax‖2 + σ2‖Rx‖2,

where R satisfies Γ−1 = RTR. (The matrix R can be, e.g., the Cholesky

factor of the positive definite and symmetric matrix Γ−1.)

282



Let us then try to work our way in the opposite direction: Consider the

corresponding classical linear inverse problem

Ax = y,

and let us solve it using Tikhonov regularization under the prior

knowledge that x ∈ R
n represents point values of a smooth function.

We try to incorporate this extra information in the solution process by

using a ‘smoothness penalty term’ for the Tikhonov functional:

T (x) = ‖y − Ax‖2 + δ‖Lx‖2,

where L ∈ R
k×n is a discrete approximation of some suitable differential

operator.
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If you now compare the two Tikhonov functionals on the previous two

slides, it seems natural that the Gaussian stochastic extension

corresponding to the smoothness penalty approach would be

Y = AX + E,

with

X ∼ N (0, (LTL)−1), E ∼ N (0, σ2I),

where σ2 = δ.

Unfortunately, there is a slight flaw in this logic: In order for the inverse

(LTL)−1 to exist — and to be positive definite — the matrix L ∈ R
k×n

needs to be injective, which is not always the case. (As an example,

quite often Lx = 0 if all elements of x are the same.)
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Due to this observation, we will next consider improper densities of the

form:

πpr(x) ∝ exp

(

−1

2
‖L(x− x0)‖2

)

= exp

(

−1

2
(x− x0)

TLTL(x− x0)

)

,

where L ∈ R
k×n is a given, possible non-injective matrix.

We will show that the posterior density may be proper even if the prior is

improper.
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Proper posteriors corresponding to improper priors

When dealing with improper prior densities, the third theorem of the

previous lecture is useless in the construction of the posterior: The prior

covariance is used explicitly in the formula for the posterior covariance,

but the natural candidate for the former, i.e., (LTL)−1, does not

typically exist.

However, recall that we also introduced alternative formulas for the

posterior mean and covariance, namely

Γpost = (Γ−1
pr +ATΓ−1

noiseA)
−1,

and

x̄ = Γpost(A
TΓ−1

noise(y − e0) + Γ−1
pr x0).

These formulas look more promising as they involve only Γ−1
pr , not Γpr.
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For simplicity let us only consider the zero mean case:

Theorem. Consider the linear observation model Y = AX + E,

A ∈ R
m×n, where X ∈ R

n and E ∈ R
m are mutually independent

random variables, of which E is proper Gaussian, E ∼ N (0,Γnoise). Let

L ∈ R
k×n be a matrix such that Ker(L) ∩Ker(A) = {0}. Then the

function

x 7→ πpr(x)π(y |x) ∝ exp

(

−1

2

(
‖Lx‖2 + (y −Ax)TΓ−1

noise(y −Ax)
)
)

defines a Gaussian density over Rn, with the corresponding covariance

and mean given by the formulas

Γpost = (LTL+ATΓ−1
noiseA)

−1, x̄ = ΓpostA
TΓ−1

noisey,

respectively.
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Proof: Let us denote G = LTL+ATΓ−1
noiseA ∈ R

n×n and let x ∈ R
n

be arbitrary. Because Γ−1
noise is positive definite, we have

xTGx = ‖Lx‖2 + (Ax)TΓ−1
noise(Ax) ≥ 0,

where the equality holds only if x ∈ Ker(L) ∩Ker(A) = {0}. In

consequence, G is positive definite, meaning that Γpost = G−1 is

well-defined and also positive definite.

By completing the square with respect to x, the the quadratic functional

in the exponent of the posterior density can be written as

‖Lx‖2 + (y −Ax)TΓ−1
noise(y −Ax) = xTGx− 2xTATΓ−1

noisey + yTΓ−1
noisey

= (x− x̄)TG(x− x̄) + c,

where c ∈ R depends only on y, not on x, and

x̄ = G−1ATΓ−1
noisey = ΓpostA

TΓ−1
noisey. �
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Exploring non-Gaussian densities
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Why sampling is needed?

Remember that the CM estimate and the conditional covariance require

solving integration problems involving the posterior density:

xCM = E{x | y} =
∫

Rn

xπ(x | y)dx

cov(x | y) =
∫

Rn

(x− xCM)(x− xCM)Tπ(x | y)dx.

In a non-Gaussian case, these integrals cannot typically be expressed in a

closed form, and one must thus resort to numerical integration in R
n.
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Suppose that our aim is to estimate some quantity of the form

I =

∫

f(x)π(x)dx.

How about using quadrature rules? In principle, we could approximate

I =

∫

f(x)π(x)dx ≈
N∑

j=1

wjf(xj)π(xj),

with some suitable weights {wj} and nodal points {xj}. Unfortunately,

if n is large, such computation is not feasible: For a quadrature rule with

k discretization points per dimension, the total number of nodes is

N = kn. In addition, the implementation of a quadrature rule would

require reliable information about the location of the ‘support’ of the

probability density π.
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Often it is more advisable to resort to sampling: Draw a large enough

sample {xj}Nj=1 from the probability distribution corresponding to π(x),

and use these points to approximate the integral as

I =

∫

f(x)π(x)dx = E{f(X)} ≈ 1

N

N∑

j=1

f(xj).

According to the Law of Large Numbers,

lim
N→∞

1

N

N∑

j=1

f(xj) =: lim
N→∞

IN = I

almost surely, i.e., the sample average converges almost surely to the

expected value. Furthermore, the Central Limit Theorem states that

var(IN − I) ≈ var(f(X))

N
,

i.e., the discrepancy between I and IN should go to zero like 1/
√
N .

292



Markov Chain Monte Carlo
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Random walk in R
n

Random walk in R
n is a process of moving around by taking random

steps. Elementary random walk:

1. Choose a starting point x0 ∈ R
n and a ’step size’ σ > 0. Set k = 0.

2. Draw a random vector wk+1 ∼ N (0, I) and set xk+1 = xk +σwk+1.

3. Set k ← k + 1 and return to step 2, unless your stopping criterion is

satisfied.

The location of the random walk at time k is a realization of the random

variable Xk, and we have an evolution model

Xk+1 = Xk + σWk+1, Wk+1 ∼ N (0, I).
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The conditional density of Xk+1, given Xk = xk, is

π(xk+1 |xk) =
1

(2πσ2)n/2
exp

(

− 1

2σ2
‖xk − xk+1‖2

)

= q(xk, xk+1).

The function q is called the transition kernel. Since q does not depend

on k, i.e., the step is always distributed in the same way, the kernel is

called time invariant.

The process above defines a chain {Xk}∞k=0 of random variables. This

chain is a discrete time stochastic process. Note that

π(xk+1 |x0, x1, . . . , xk) = π(xk+1 |xk),

i.e., the probability distribution of Xk+1 depends on the past only

through the preceding element Xk. A stochastic process with this

property is called a Markov chain.
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Example: Random walk in R
2

A random walk model in R
2:

Xk+1 = Xk + σWk+1, Wk+1 ∼ N (0, C), C ∈ R
2×2.

Since C is symmetric and positive definite, it has positive eigenvalues

and allows an eigenvalue decomposition

C = UDUT.

Hence, the inverse of C can be written as

C−1 = UD−1UT = (UD−1/2) (D−1/2UT)
︸ ︷︷ ︸

=L

,

which means that the transition Kernel can in turn be given as

q(xk, xk+1) = π(xk+1 |xk) ∝ exp

(

− 1

2σ2
‖L(xk − xk+1)‖2

)

.
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Consequently, the random walk model becomes

Xk+1 = Xk + σL−1W̃k+1, W̃k+1 ∼ N (0, I),

where we have used the fact that L is the whitening matrix of Wk+1.

To demonstrate the effect of the covariance matrix, let

U = [u(1), u(2)] =




cos θ − sin θ

sin θ cos θ



 , θ =
π

3
,

and

D = diag(s21, s
2
2), s1 = 1, s2 = 4.

In the light of this random walk model, the random steps should on

average have a component about four times larger in the direction of the

second eigenvector e2 than in the direction of the first eigenvector e1.
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On the left, three random walk realizations for C = I ; on the right, three

realizations for C given above. In both cases, σ = 0.1 and x0 = [0, 0]T.
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How about sampling from a given density p(x)?

Assume now that X is a random variable with a probability density

π(x) = p(x).

Consider an arbitrary transition kernel q(x, y) that we use to generate a

new random variable Y given X = x, that is,

π(y |x) = q(x, y).

The probability density of Y is found via marginalization,

π(y) =

∫

π(y |x)π(x)dx =

∫

q(x, y)p(x)dx.

If the probability density of Y is equal to the probability density of X ,

i.e., ∫

q(x, y)p(x)dx = p(y),

we say that p is an invariant density of the transition kernel q.
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To summarize, if p is an invariant density of the transition kernel q and

the random variable X obeys the density p, then the random variable Y

defined via the conditional density π(y |x) = q(x, y) is still distributed

according to the density p. Loosely speaking, the transition defined by q

does not affect the distribution of X .

This property of invariant densities and corresponding transition kernels

can be put to use in sampling.
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Theorem. Let {Xk}∞k=0 be a time invariant Markov chain with the

transition kernel q, i.e.,

π(xk+1 |xk) = q(xk, xk+1).

Assume that p is an invariant density of q, and that q satisfies some

extra technical conditions (irreducibility and aperiodicity). Then, for all

x0 ∈ R and any Borel set B ⊂ R
n, it holds that

lim
N→∞

P{XN ∈ B | X0 = x0} =

∫

B

p(x)dx.

Moreover, for any regular enough function f ,

lim
N→∞

1

N

N∑

j=0

f(Xj) =

∫

Rn

f(x)p(x)dx

almost surely.

Proof. Proof is omitted due to obvious reasons. �
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Let us try to put the above theorem into practical use. Suppose that we

want to sample some probability density p and happen to know that it is

invariant with respect to some transition kernel q. Then, we can proceed

as follows:

1. Select a starting point x0 and set k = 0.

2. Draw xk+1 from q(xk, xk+1).

3. Set k ← k + 1 and return to step 2, unless your personal stopping

criterion is satisfied.

According to the previous theorem, the sample {xk}Nk=0 should give a

better and better representation of p as N increases.

Hence, we are facing an inverse problem: Given a probability density p,

we would like to find a kernel q such that p is its invariant density.

Very popular technique for constructing such a transition kernel is the

Metropolis–Hastings algorithm.
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Metropolis–Hastings algorithm

Let us introduce a slightly more general Markov process: If you are

currently at some x ∈ R
n, either

1. stay put at x with the probability r(x), 0 ≤ r(x) ≤ 1, or

2. move away from x using a transition kernel R(x, y) otherwise.

Since R is a transition kernel, the mapping y 7→ R(x, y) defines a

probability density, and thus
∫

Rn

R(x, y)dy = 1, for all x ∈ R
n.

Denote by A the event of moving away from x and by ¬A the event of

not moving, meaning that

P{A} = 1− r(x), P{¬A} = r(x).
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What is the density of Y generated by this strategy, given X = x?

Let B ⊂ R
n be a Borel set and let us write

P{Y ∈ B | X = x} = P{Y ∈ B | X = x,A}P{A}
+ P{Y ∈ B | X = x,¬A}P{¬A}.

The probability of arriving in B if we happen to move:

P{Y ∈ B | X = x,A} =
∫

B

R(x, y)dy.

Arriving in B without moving happens only if x ∈ B, i.e.,

P{Y ∈ B | X = x,¬A} = χB(x) :=







1, if x ∈ B,

0, if x 6∈ B.
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To sum up, the probability of reaching B from x is

P{Y ∈ B | X = x} = (1− r(x))

∫

B

R(x, y)dy + r(x)χB(x).

Finally, the probability of Y ∈ B is found through marginalization:

P{Y ∈ B} =
∫

P{Y ∈ B | X = x}p(x)dx

=

∫

p(x)

(∫

B

(1− r(x))R(x, y)dy

)

dx+

∫

χB(x)r(x)p(x)dx

=

∫

B

(∫

p(x)(1− r(x))R(x, y)dx

)

dy +

∫

B

r(x)p(x)dx

=

∫

B

(∫

p(x)(1− r(x))R(x, y)dx+ r(y)p(y)

)

dy.
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By definition

P{Y ∈ B} =
∫

B

π(y)dy,

and comparing this with the above formula, we see that the probability

density of Y must be

π(y) =

∫

p(x)(1− r(x))R(x, y)dx+ r(y)p(y).

Our ultimate goal is to find a kernel R and a probability r such that

π(y) = p(y), that is,

p(y) =

∫

p(x)(1− r(x))R(x, y)dx+ r(y)p(y),

or, equivalently,

(1− r(y))p(y) =

∫

p(x)(1− r(x))R(x, y)dx.

306



Denote

K(x, y) = (1− r(x))R(x, y),

and observe that, since R is a transition kernel,
∫

K(y, x)dx = (1− r(y))

∫

R(y, x)dx = 1− r(y).

The condition at the bottom of the previous slide can thus be written as
∫

p(y)K(y, x)dx =

∫

p(x)K(x, y)dx,

which is called the balance equation. This condition is satisfied, in

particular, if the integrands are equal, i.e.,

p(y)K(y, x) = p(x)K(x, y).

This condition is known as the detailed balance equation. The

Metropolis–Hastings algorithm is simply a technique for finding a kernel

K that satisfies the detailed version of the balance equation.
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Start by selecting a candidate generating kernel q(x, y), then define

α̃(x, y) = min

{

1,
p(y)q(y, x)

p(x)q(x, y)

}

,

and finally set

K(x, y) = α̃(x, y)q(x, y).

A simple calculation shows that such K satisfies the detailed balance

equation, i.e.,

p(y)α̃(y, x)q(y, x) = p(x)α̃(x, y)q(x, y).

To convince yourself, take note that for any x, y ∈ R
n either

α̃(x, y) =
p(y)q(y, x)

p(x)q(x, y)
and α̃(y, x) = 1,

or

α̃(x, y) = 1 and α̃(y, x) =
p(x)q(x, y)

p(y)q(y, x)
.
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Metropolis–Hastings algorithm

The actual Metropolis–Hastings algorithm for drawing samples is as

follows:

1. Choose x0 ∈ R
n. Set k = 0.

2. Given xk, draw y using the transition kernel q(xk, y) of your choice.

3. Calculate the acceptance ratio,

α(xk, y) :=
p(y)q(y, xk)

p(xk)q(xk, y)
.

4. Flip the α-coin: Draw t ∼ Uniform([0, 1]). If α > t, set xk+1 = y.

Otherwise, stay put at xk, i.e., set xk+1 = xk.

5. Set k ← k + 1 and return to Step 2, unless your stopping criterion is

satisfied.

The sample {xk}Nk=0 should represent p if N is large enough.
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