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Hypermodels
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In the statistical framework, the prior densities usually depend on some

parameters such as variance or mean. Typically — or at least thus far

—, these parameters are assumed to be known.

Some classical regularization methods can be viewed as construction of

estimators based on the posterior density (e.g., Tikhonov regularization).

The regularization parameter, which corresponds to the parameter that

defines the prior distribution, is not assumed to be know, but selected

using, e.g., the Morozov discrepancy principle.

What happens if it is not clear how to choose these ‘prior parameters’ in

the statistical framework?

If a parameter is not know, it can be estimated as a part of the statistical

inference problem based on the data. This leads to hierarchical models

that include hypermodels for the parameters defining the prior density.
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Assume that the prior distribution depends on a parameter α which is

not assumed to be known. Then we write the prior as a conditional

density, that is,

πpr(x |α).

Assuming we have a hyperprior for α, i.e.,

πhyper(α),

we can write the joint distribution of x and α as

π(x, α) = πpr(x |α)πhyper(α).

Assuming a likelihood model π(y |x) for the measurement data y, we

get the posterior density for x and α, given y, from the Bayes formula:

π(x, α | y) ∝ π(y |x)π(x, α) = π(y |x)π(x |α)πhyper(α).
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In general, the hyperprior density πhyper may depend on some

hyperparameter α0. In such a case, the main reason for the use of a

hyperprior model is that the construction of the posterior is assumed to

be more robust with respect to fixing a value for the hyperparameter α0

than fixing a value for α.

Sometimes α0 can also be treated as a random variable with a respective

probability density. Then, we would write

πhyper(α |α0),

giving rise to nested hypermodels.
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Example: Hypermodel for a deconvolution problem

(Adapted from the textbook by Calvetti and Somersalo, Chapter 10)

Consider a one-dimensional deconvolution problem, the goal of which is

to estimate a signal f : [0, 1] → R from noisy, blurred observations

modelled as

yi = g(si) =

∫ 1

0

A(si, t)f(t)dt+ e(si), 1 ≤ i ≤ m,

where {si}mi=1 ⊂ [0, 1] are the uniformly distributed measurement points,

the blurring kernel is defined to be

A(s, t) = exp

(

−
1

2ω2
(t− s)2

)

,

and the noise is Gaussian, or more precisely e ∼ N (0, σ2I).
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To begin with, we discretize the model as

y = Ax+ e,

where A ∈ R
m×n is obtained by approximating the integral with a

suitable quadrature rule, and the vector x contains the values of the

unknown signal at the discretization points {tj}
n
j=0 that we have chosen

to be distributed uniformly over the interval [0, 1]. To be more precise,

xj = f(tj), tj =
j

n
, 0 ≤ j ≤ n.

For simplicity we assume it is known that f(0) = x0 = 0, and define the

actual unknown x to be

x =











x1

...

xn











∈ R
n.
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Assume that as prior information we know that the signal is continuous

except for a possible jump discontinuity at a known location.

Let us start with a Gaussian first order smoothness prior,

πpr(x) ∝ exp

(

−
1

2γ2
‖Lx‖2

)

,

where L is a first order finite difference matrix (recall that x0 = 0),

L =















1

−1 1

. . .
. . .

−1 1















∈ R
n×n.
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It is easy to see that L is invertible and

L−1 =















1

1 1
...

. . .
. . .

1 . . . 1 1















is a lower triangular matrix. Since 1
γL is the whitening matrix of

X ∈ R
n distributed according to πpr(x) — see the eighth lecture —, it

follows that

X = L−1W, W ∼ N (0, γ2I).

Due to the particular shape of L−1, this relation can alternatively be

given as a Markov process:

Xj = Xj−1 +Wj , Wj ∼ N (0, γ2), j = 1, . . . , n, X0 = 0.
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Next, we aim at fine-tuning the the above smoothness prior so that it

allows a jump discontinuity over the interval [tk−1, tk].

To this end, we modify the above Markov model (only) at j = k by

setting

Xk = Xk−1 +Wk, Wk ∼ N

(

0,
γ2

δ2

)

,

where δ < 1 is a parameter controlling the variance of Wk, i.e., the

expected size of the jump.

Let us walk the the above steps backwards: It is easy to see that this

new Markov process can alternatively be given as

X = L−1(D1/2)−1W, W ∼ N (0, γ2I),

where

D1/2 = diag(1, 1, . . . , δ, . . . , 1, 1) ∈ R
n×n

is defined so that (D1/2)−1 scales the kth component of W by 1/δ.
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In consequence, after the above modification in the kth step of the

Markov process defining X , the random variable D1/2LX is distributed

according to N (0, γ2I), and thus we have introduced the fine-tuned

‘jump prior’

πpr(x) ∝ exp

(

−
1

2γ2
‖D1/2Lx‖2

)

.

Let us draw samples from this kind of a prior density. We set n = 150

and γ = 0.1, meaning that we expect increments of the order 0.1 at

most of the subintervals. As an exception, at two known locations

t ≈ 0.4 and t ≈ 0.8 we use δ < 1 at the corresponding diagonal element

of D1/2, in anticipation of a jump of the order γ/δ = 0.1/δ.
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Random draws from the jump discontinuity prior with two different values of δ.
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As the additive noise was assumed to be Gaussian, the likelihood density

corresponding to the considered measurement is

π(y |x) ∝ exp

(

−
1

2σ2
‖y −Ax‖2

)

,

and due to the Bayes formula, the posterior density can thus be written

as

π(x | y) ∝ exp

(

−
1

2σ2
‖y −Ax‖2 −

1

2γ2
‖D1/2Lx‖2

)

.

Using the results for Gaussian densities from previous lectures, the mean

of the posterior, which is also the MAP and the CM estimate, can be

written explicitly as

xCM = xMAP =

(

σ2

γ2
LT(D1/2)TD1/2L+ ATA

)−1

ATy.
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The original signal f(t) and the measurement data (ω ≈ 0.05):

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

signal f(t)

0 0.2 0.4 0.6 0.8 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
measurement data

353



Posterior estimates for f without the discontinuity model (i.e., with the

mere first order smoothness prior) and with the discontinuity model with

known locations and jump sizes (γ = 0.1):
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Next we choose γ = 0.01 that corresponds to increments of the order of

0.01 at each subinterval, and scale δ accordingly so that it is in

accordance with jump sizes of the order 1.
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Assume next that the locations and expected sizes of the jumps are not

known, but we expect a slowly varying signal that could have a few

jumps at unknown locations.

We modify the Markov model to allow different increments at different

positions:

Xj = Xj−1 +Wj , Wj ∼ N

(

0,
1

θj

)

, θj > 0, j = 1, . . . , n.

The corresponding prior model can be obtained in the same way as

above:

πpr(x) ∝ exp

(

−
1

2
‖D1/2Lx‖2

)

,

where this time around

D1/2 = diag(θ
1/2
1 , θ

1/2
2 , . . . , θ1/2n ).

If we knew the vector θ = [θ1, . . . , θn]
T, we could proceed as previously.
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If θ ∈ R
n is not know, it can be considered as a random variable and its

estimation can be included as a part of the inference problem. To this

end, we need to write the conditional density

πpr(x | θ).

In this case, the normalizing constant of the density πpr(x | θ) is no

longer a constant, but depends on the random variable θ and thus

cannot be ignored.

Recall the probability density of a n-variate Gaussian distribution:

π(z) =

(

1

(2π)n det(Γ)

)1/2

exp

(

−
1

2
zTΓ−1z

)

,

where the mean is assumed to be zero.
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In our case, Γ = (LTDL)−1, where D = diag(θ) ∈ R
n×n. Recall that

the determinant of a triangular matrix is the product of its diagonal

elements, meaning that det(L) = det(LT) = 1. Moreover, the

determinant of an inverse matrix is the inverse of the determinant of the

original matrix. Hence, it holds that

det(Γ)−1 = det(LTDL) = det(LT) det(D) det(L) =
n
∏

j=1

θj ,

and the properly normalized density becomes

πpr(x | θ) =

(

∏n
j=1 θj

(2π)n

)1/2

exp

(

−
1

2
‖D1/2Lx‖2

)

=
1

(2π)n/2
exp



−
1

2
‖D1/2Lx‖2 +

1

2

n
∑

j=1

log θj

)



 .
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Next we need to choose a hyperprior density for θ. Qualitatively, we

should allow some components of θ to deviate strongly from the

‘average’.

We decide to use an ℓ1-type impulse prior with a positivity constraint:

πhyper(θ) ∝ π+(θ) exp



−
γ

2

n
∑

j=1

θj





where π+(θ) is one if all components of θ are positive, and zero

otherwise, and γ > 0 is a hyperparameter.
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The posterior distribution can then be written as

π(x, θ | y) ∝ π(y |x)π(x, θ) = π(y |x)π(x | θ)πhyper(θ)

∝ exp



−
1

2σ2
‖y −Ax‖2 −

1

2
‖D1/2Lx‖2 −

γ

2

n
∑

j=1

θj +
1

2

n
∑

j=1

log θj





if all components of θ are positive, and π(x, θ | y) = 0 otherwise. It is

straightforward to see that the corresponding MAP estimate is the

minimizer of the functional

F (x, θ) =

∥

∥

∥

∥

∥

∥





1
σA

D1/2L



x−





1
σy

0





∥

∥

∥

∥

∥

∥

2

+ γ
n
∑

j=1

θj −
n
∑

j=1

log θj .

over (x, θ) ∈ R
n × R

n
+.
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We apply a two stage minimization algorithm:

Choose some initial guesses for x and θ. Then, repeat the following two

steps until convergence is achieved:

1. Keep θ fixed and update x to be the least squares solution of




1
σA

D1/2L



x =





1
σy

0



 ,

where D = diag(θ).

2. Fix x and update θ by minimizing F (x, ·) with respect to the

second variable. An easy calculation shows that this minimizer can

be given componentwise as

θj =
1

w2
j + γ

, j = 1, . . . , n,

where w = Lx ∈ R
n is the vector of increments corresponding to x.
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MAP estimates for x and θ provided by the above alternating algorithm

with γ = 10−5 and the initial guesses x0 = 0 and θ0,j = 1/γ,

j = 1, . . . , n. The data is the same as depicted on page 448.
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Another example: The original signal f(t) and the measurement data.
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MAP estimates for x and θ provided by the above alternating algorithm

with γ = 10−5 and the initial guesses x0 = 0 and θ0,j = 1/γ,

j = 1, . . . , n.
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The End.
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