Chapter 18

Utility Interface

Chapter 18Optimizing the Utility Interface with Power
Electronic Systems18-1Introduction483

- 18-2 Generation of Current Harmonics 484
- 18-3 Current Harmonics and Power Factor 485
- 18-4 Harmonic Standards and Recommended Practices 485
- 18-5 Need for Improved Utility Interface 487
- 18-6 Improved Single-Phase Utility Interface 488
- 18-7 Improved Three-Phase Utility Interface 498
- 18-8 Electromagnetic Interference 500
 - Summary502Problems503References503

• Power quality has become an important issue

483

Various Loads Supplied by the Utility Source

PCC is the point of common coupling

Chapter 18 Utility Interface

Diode-Rectifier Bridge

[•] Bock diagram

Typical Harmonics in the Input Current

Table 18-1 Typical Harmonics in a Single-Phase Input CurrentWaveform with No Line Filtering

			_					
h	3	5	7	9	Π	13	15	
$\left(\frac{I_h}{I_1}\right)\%$	73.2	36.6	8.1	5.7	4.1	2.9	0.8	0.4

• Single-phase diode-rectifier bridge

Harmonic Guidelines: IEEE 519

	Total Harmonic					
I_{SC}/I_1	h < 11	$11 \le h < 17$	$17 \le h < 23$	$23 \le h < 35$	$35 \leq h$	Distortion (%)
<20	4.0	2.0	1.5	0.6	0.3	5.0
20-50	7.0	3.5	2.5	1.0	0.5	8.0
50-100	10.0	4.5	4.0	1.5	0.7	12.0
100-1000	12.0	5.5	5.0	2.0	1.0	15.0
>1000	15.0	7.0	6.0	2.5	1.4	20.0

Table 18-2 Harmonic Current Distortion (I_h/I_1)

Note: Harmonic current limits for nonlinear load connected to a public utility at the point of common coupling (PCC) with other loads at voltages of 2.4–69 kV. I_{sc} is the maximum short-circuit current at PCC. I_1 is the maximum fundamental-frequency load current at PCC. Even harmonics are limited to 25% of the odd harmonic limits above. *Source:* Reference 1.

 commonly used for specifying limits on the input current distortion

Harmonic Guidelines: IEEE 519

Table 18-3 Harmonic Voltage Limits (V_h/V_1) (%) for Power Producers (Public Utilities or Cogenerators)

	2.3–69 kV	69–138 kV	> 138 KV
Maximum for	3.0	1.5	1.0
individual harmonic Total harmonic	5.0	2.5	1.5
distortion			

Note: This table lists the quality of the voltage that the power producer is required to furnish a user. It is based on the voltage level at which the user is supplied.

Source: Reference 1.

• Limits on distortion in the input voltage supplied by the utility

Reducing the Input Current Distortion

(a)

(b)

Figure 18-3 Passive filters to improve i_s waveform: (a) passive filter arrangement; (b) current waveform.

• use of passive filters

Chapter 18 Utility Interface

Power-Factor-Correction (PFC) Circuit

Figure 18-4 Active harmonic filtering: (a) step-up converter for current shaping; (b) line waveforms; (c) v_s and i_L .

• For meeting the harmonic guidelines Chapter 18 Utility Interface

Dc current

No losses and current sinusoidal in input side

$$p_{in} = \sqrt{2}U_s \left| \sin \omega t \right| \left| \sqrt{2}I_s \sin \omega t \right| = U_s I_s - U_s I_s \cos 2\omega t$$

- Dc voltage u_d can be assumed constant $p_d = U_d i_d$
- Large switching frequency
 - $-L_{d}$ can be assumed small
 - Instantaneous powers are equal, $p_{in} = p_d$

$$i_d = I_d + i_C = \frac{U_s I_s}{U_d} - \frac{U_s I_s}{U_d} \cos 2\omega t$$

Voltage ripple

$$i_d = I_d + i_C = \frac{U_s I_s}{U_d} - \frac{U_s I_s}{U_d} \cos 2\omega t$$

$$I_d = I_{load} = \frac{U_s I_s}{U_d}$$

Capacitor current

$$i_{C} = -\frac{U_{s}I_{s}}{U_{d}}\cos 2\omega t = -I_{d}\cos 2\omega t$$

Capacitor voltage ripple

$$u_{d,ripple} = \frac{1}{C_d} \int i_C dt = -\frac{I_d}{2\omega C_d} \cos 2\omega t$$

Power-Factor-Correction (PFC) Circuit Control

Figure 18-5 Control block diagram.

generating the switch on/off signals

Power-Factor-Correction (PFC) Circuit

Figure 18-6 Constant-frequency control.

• Operation during each half-cycle Chapter 18 Utility Interface

Current ripple

• Both dc voltage U_d and supply voltage assumed constant during switch conduction

times

$$t_{on} = \frac{L_d I_{hys}}{|u_s|} \qquad t_{off} = \frac{L_d I_{hys}}{U_d - |u_s|}$$

$$1 \qquad (U_d - |u_s|)|u_s|$$

- Switching frequency $f_s = \frac{1}{t_{on} + t_{off}} = \frac{1}{L_d I_{hys} U_d}$
- Switching frequency is constant, current ripple and its maximum value

$$I_{hys} = \frac{\left(U_d - |u_s|\right)|u_s|}{f_s L_d U_d} \qquad I_{hys,\max} = \frac{U_d}{4f_s L_d} \quad \text{kun} \quad |u_s| = \frac{U_d}{2}$$

Thyristor Converters for 4-Quadrant Operation

Figure 18-7 Back-to-back connected converters for bidirectional power flow.

Two back-to-back connected 2-quadrant converters

Switch-Mode Converter Interface

Figure 18-8 Switch-mode converter for the utility interface.

• Bi-directional power flow; unity PF is possible

Switch-Mode Converter Interface

Figure 18-9 Rectification and inversion: (a) general phasor diagram; (b) rectification at unity power factor; (c) inversion at unity power factor.

• Rectifier and Inverter modes based on the direction of power flow

Chapter 18 Utility Interface

Switch-Mode Converter Control

Figure 18-10 Control of the switch-mode interface.

• DC bus voltage is maintained at the reference value

Switch-Mode Converter Interface

Figure 18-11 Waveforms in the circuit of Fig. 18-8 at unity power factor of operation: (a) phasor diagram; (b) circuit waveforms.

(b)

• Waveforms in the rectifier mode Chapter 18 Utility Interface

3-Phase Switch-Mode Converter Interface

Figure 18-12 Three-phase, switch-mode converter.

• Rectifier and Inverter modes based on the direction of power flow

Chapter 18 Utility Interface

EMI: Conducted Interefence

Figure 18-13 Conducted interference.

Common and differential modes

Switching Waveforms

Figure 18-14 Switching waveform.

• Typical rise and fall times

Conducted EMI

Figure 18-15 The FCC and VDE standards for conducted EMI.

Various Standards

Conducted EMI

Figure 18-16 Filter for conducted EMI.

• Filter arrangement