Lecture Notes

Snubber Circuits

Outline

- A. Overview of Snubber Circuits
- B. Diode Snubbers
- C. Turn-off Snubbers
- D. Overvoltage Snubbers
- E. Turn-on Snubbers
- F. Thyristor Snubbers

Overview of Snubber Circuits for Hard-Switched Converters

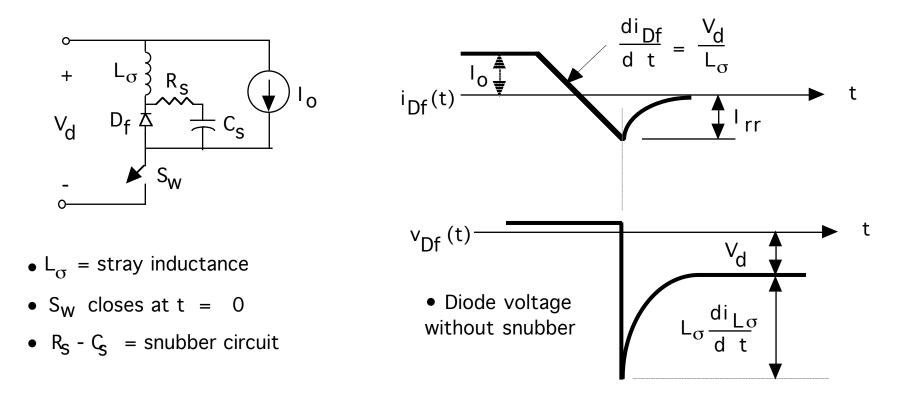
Function: Protect semiconductor devices by:

- Limiting device voltages during turn-off transients
- Limiting device currents during turn-on transients
- Limiting the rate-of-rise (di/dt) of currents through the semiconductor device at device turn-on
- Limiting the rate-of-rise (dv/dt) of voltages across the semiconductor device at device turn-off
- Shaping the switching trajectory of the device as it turns on/off

Types of Snubber Circuits

- 1. Unpolarized series R-C snubbers
 - Used to protect diodes and thyristors
- 2. Polarized R-C snubbers
 - Used as turn-off snubbers to shape the turn-on switching trajectory of controlled switches.
 - Used as overvoltage snubbers to clamp voltages applied to controlled switches to safe values.
 - Limit dv/dt during device turn-off
- 3. Polarized L-R snubbers
 - Used as turn-on snubbers to shape the turn-off switching trajectory of controlled switches.
 - Limit di/dt during device turn-on

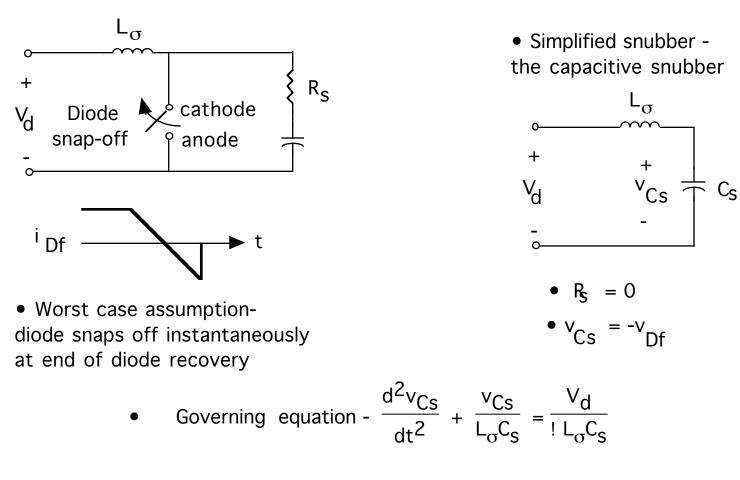
Need for Diode Snubber Circuit



• Diode breakdown if
$$V_d + L_\sigma \frac{di_{L\sigma}}{dt} > BV_{BD}$$

Snubbers - 3

Equivalent Circuits for Diode Snubber



• Boundary conditions -
$$v_{CS}(0^+) = 0$$
 and $i_{LO}(0^+) = I_{rr}$

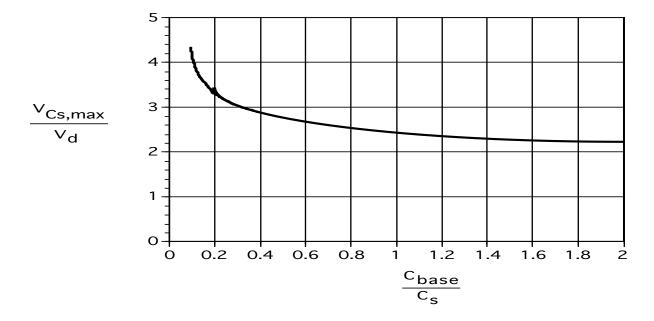
Copyright © by John Wiley & Sons 2003

Performance of Capacitive Snubber

•
$$v_{CS}(t) = V_d - V_d \cos(\omega_0 t) + V_d \sqrt{\frac{C_{base}}{C_s}} \sin(\omega_0 t)$$

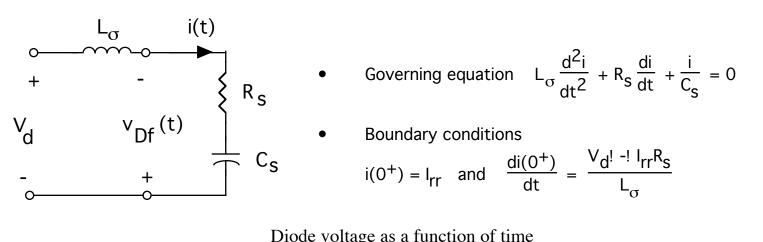
•
$$\omega_0 = \frac{1}{\sqrt{L_{\sigma}C_s}}$$
; $C_{\text{base}} = L_{\sigma} \left[\frac{I_{\text{rr}}}{V_d}\right]^2$

•
$$V_{cs,max} = V_d \left\{ 1! +! \sqrt{1! +! \frac{C_{base}}{C_s}!} \right\}$$



Effect of Adding Snubber Resistance

Snubber Equivalent Circuit



Diode voltage as a function of time

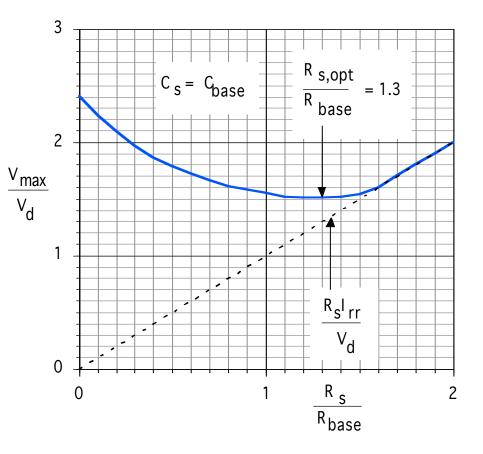
$$\begin{split} &\frac{V_{df}}{V_{d}}(t) = -1 - \frac{e^{-\alpha t}}{\sqrt{\eta}!\cos(\phi)} \sin(\omega_{a}t - \phi + \zeta) \quad ; \quad R_{s} \leq 2 R_{b} \\ &\omega_{a} = \omega_{o} \sqrt{1 - !(\alpha/!\omega_{o})^{2}} \quad ; \quad \alpha = \frac{R_{s}}{2!L_{\sigma}} \quad ; \quad \omega_{o} = \frac{1}{\sqrt{L_{\sigma}C_{s}}} \quad ; \quad \phi = \tan^{-1} \left[\frac{(2 - x)\sqrt{\eta}}{\sqrt{4! - !\eta x^{2}}}\right] \\ &\eta = \frac{C_{s}}{C_{b}} \quad ; \quad x = \frac{R_{s}}{R_{b}} \quad ; \quad R_{b} = \frac{V_{d}}{I_{rr}} \quad ; \quad C_{b} = \frac{L_{\sigma}![I_{rr}]^{2}}{V_{d}^{2}} \quad ; \quad \zeta = \tan^{-1}(\alpha/\omega_{a}) \end{split}$$

Copyright © by John Wiley & Sons 2003

Performance of R-C Snubber

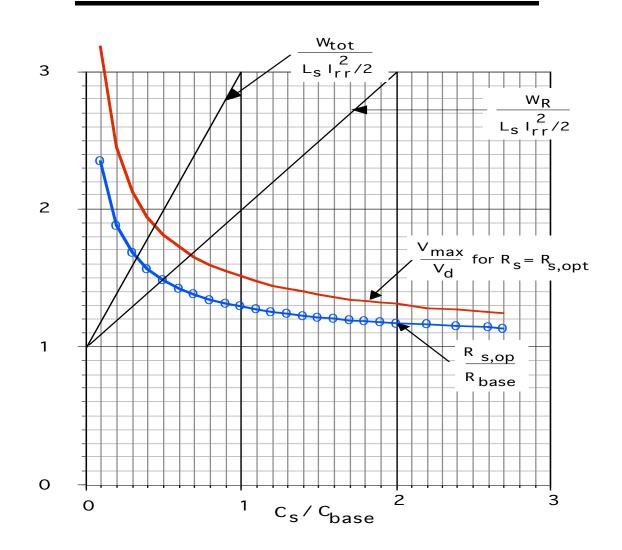
• At
$$t = t_m \ v_{Df}(t) = V_{max}$$

• $t_m = \frac{tan^{-1}(\omega_a/\alpha)}{\omega_a} + \frac{\phi! - ! \xi}{\omega_a} \ge 0$
• $\frac{V_{max}}{V_d} = 1 + \sqrt{1! + ! \eta^{-1!} - ! x} \ exp(-\alpha t_m)$
• $\eta = \frac{C_s}{C_{base}} \quad \text{and} \quad x = \frac{R_s}{R_{base}}$
• $C_{base} = \frac{L_s! \ l_{rr}^2}{V_d^2} \quad \text{and} \quad R_{base} = \frac{V_d}{l_{rr}}$

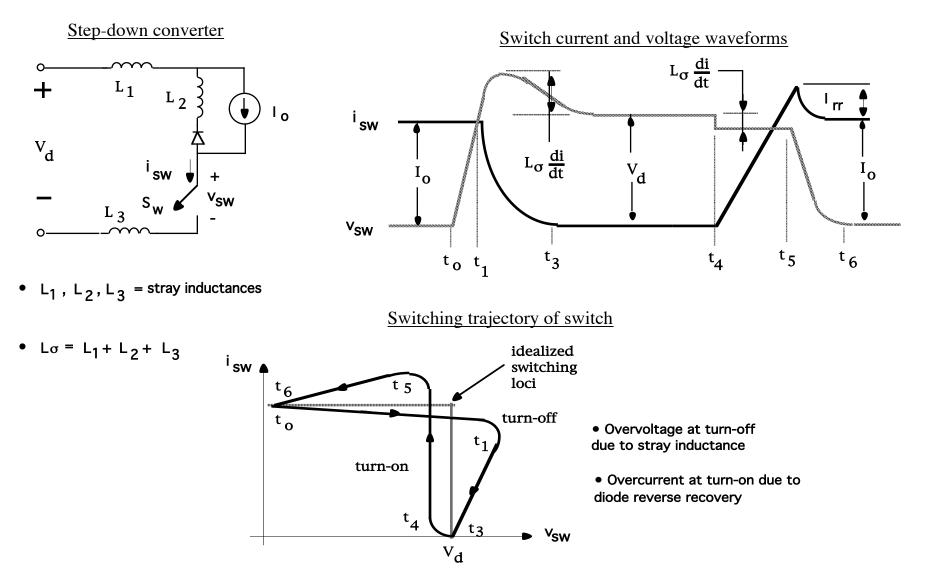


Snubbers - 7

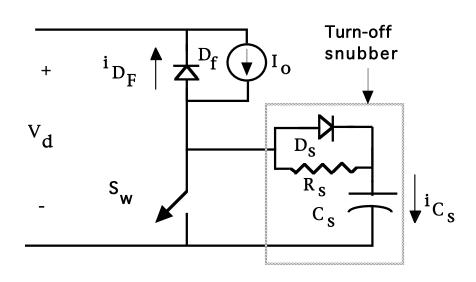
Diode Snubber Design Nomogram



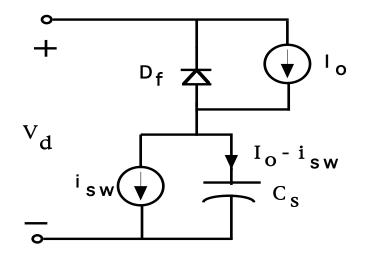
Need for Snubbers with Controlled Switches



Turn-off Snubber for Controlled Switches



Step-down converter with turn-off snubber

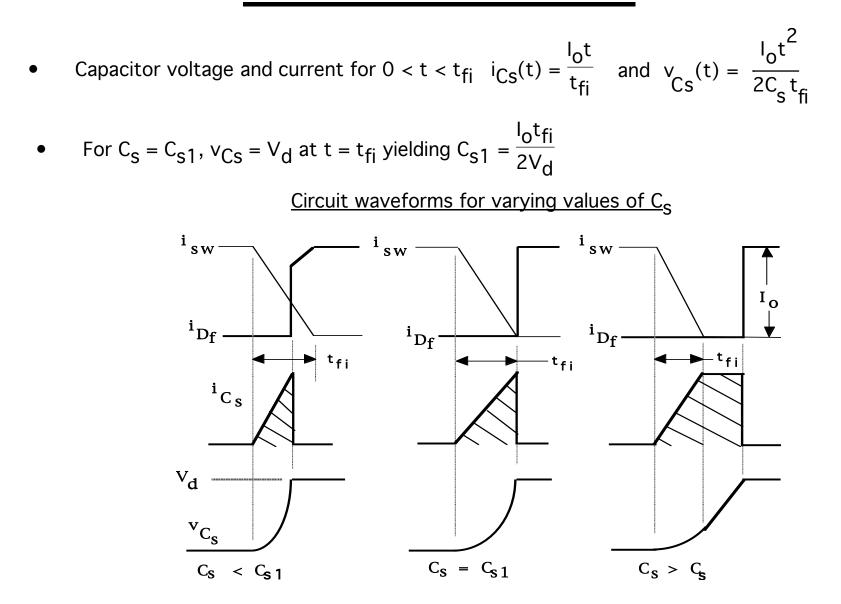


Equivalent circuit during switch turn-off.

- Simplifying assumptions
 - 1. No stray inductance.
 - 2. $i_{sw}(t) = I_0(1 t/t_{fi})$
 - 3. $i_{sw}(t)$ uneffected by snubber circuit.

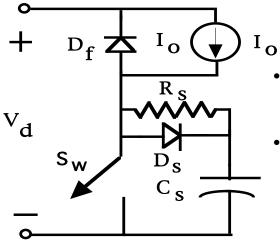
Copyright © by John Wiley & Sons 2003

Turn-off Snubber Operation

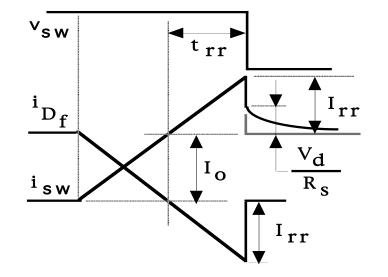


Copyright © by John Wiley & Sons 2003

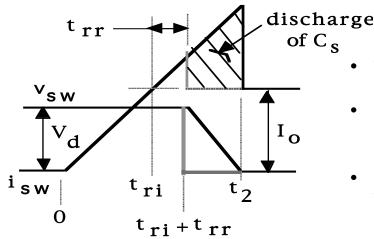
Benefits of Snubber Resistance at Switch Turn-on



- D_s shorts out R_s during S_w turn-off.
- During S_w turn-on, D_s reverse-biased and C_s discharges thru R_s.



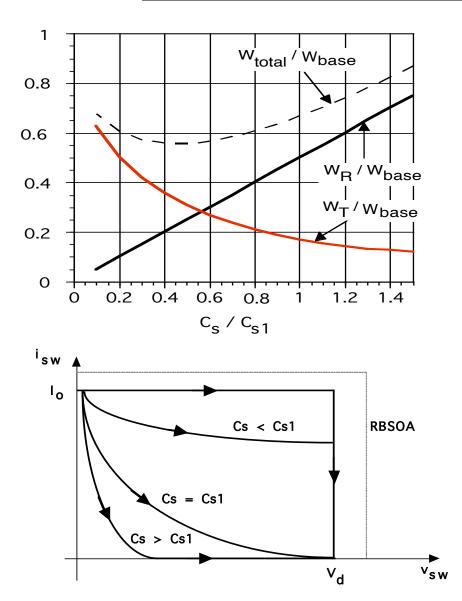
- Turn-on with $R_s > 0$ •
- Energy stored on C_s dissipated in R_s rather than in S_w .
- Voltage fall time kept quite short.



- - Turn-on with $R_s = 0$
 - Energy stored on C_s dissipated in S_w.
 - Extra energy dissipation in S_w • because of lengthened voltage fall time.

Copyright © by John Wiley & Sons 2003

Effect of Turn-off Snubber Capacitance



Energy dissipation

 W_R = dissipation in resistor

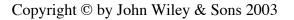
$$W_T$$
 = dissipation in
switch S_W

$$C_{s1} = \frac{I_0 t_{fi}}{2V_d}$$

 $W_{total} = W_R + W_T$

$$W_{base} = 0.5 V_d I_o t_{fi}$$

Switching trajectory



Turn-off Snubber Design Procedure

Selection of C_s

- Minimize energy dissipation (W_T) in BJT at turn-on
- Minimize $W_R + W_T$
- Keep switching locus within RBSOA
- Reasonable value is $C_s = C_{s1}$

Snubber recovery time (BJT in on-state)

- Capacitor voltage = $V_d \exp(-t/R_s C_s)$
- Time for v_{Cs} to drop to $0.1V_d$ is 2.3 R_sC_s
- BJT must remain on for a time of 2.3 $R_s C_s$

<u>Selection of R</u>_s

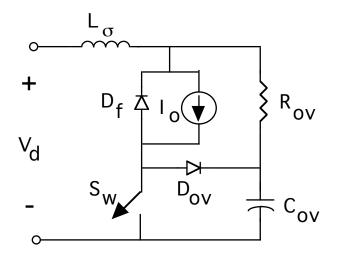
• Limit $i_{cap}(0^+) = \frac{V_d}{R_s} < I_{rr}$

• Usually designer specifies $I_{rr} < 0.2 I_0$ so $\frac{V_d}{R_s} = 0.2 I_0$

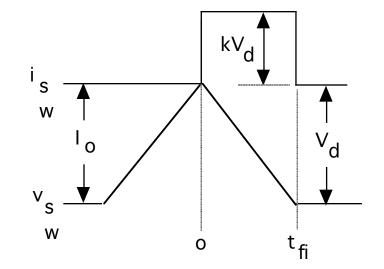
Copyright © by John Wiley & Sons 2003

Overvoltage Snubber

۲



 Step-down converter with overvoltage snubber comprised of D_{ov}, C_{ov}, and R_{ov}.

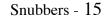


- Switch S_w waveforms without overvoltage snubber
- t_{fi} = switch current fall time ; kV_d = overvoltage on S_w

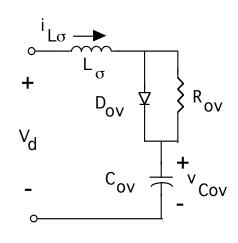
•
$$kV_d = L_\sigma \frac{di_{L\sigma}}{dt} = L_\sigma \frac{l_o}{t_{fi}}$$

•
$$L_{\sigma} = \frac{kV_{d}t_{fi}}{I_{o}}$$

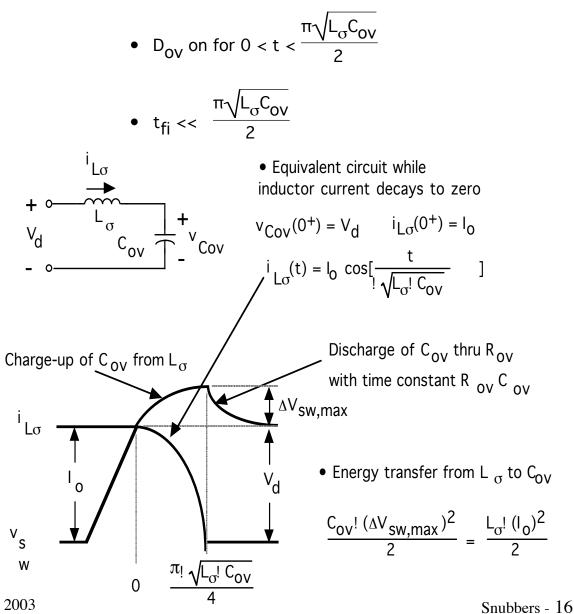
 Overvoltage snubber limits overvoltage (due to stray I nductance) across Sw as it turns off.



Operation of Overvoltage Snubber



- D_{ov},C_{ov} provide alternate path for inductor current as S_w turns off.
- Switch current can fall to zero much faster than L_s current.
- D_f forced to be on (approximating a short ckt) by I_o after S_w is off.
- Equivalent circuit after turn-off of S_w .



Overvoltage Snubber Design

•
$$C_{OV} = \frac{L_s! I_0^2}{(\Delta v_{sw,max})^2}$$

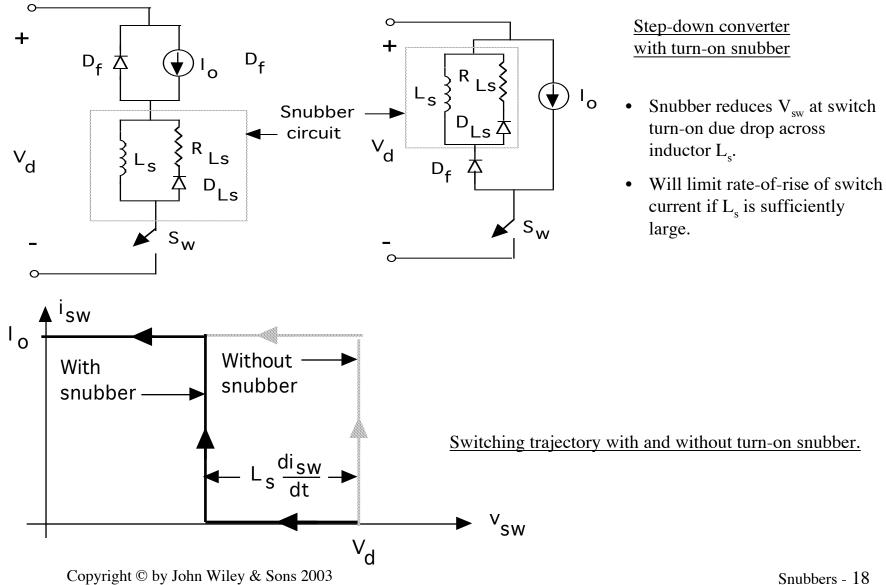
• Limit $\Delta v_{sw,max}$ to $0.1V_d$

• Using
$$L_s = \frac{kV_{d!} t_{fi}}{|!|l_0}$$
 in equation for C_{ov} yields
• $C_{ov} = \frac{kV_d t_{fi} l_0^2}{|l_0(0.1V_d)^2} = \frac{100k! t_{fi!} l_0}{|!|V_d}$
• $C_{ov} = 200 \ kC_{s1}$ where $C_{s1} = \frac{t_{fi} l_0}{|2V_d|}$ which is used
in turn-off snubber

• Recovery time of C_{OV} (2.3 $R_{OV}C_{OV}$) must be less than off-time duration, t_{Off} , of the switch Sw.

•
$$R_{OV} \approx \frac{t_{Off}}{2.3! C_{OV}}$$

Turn-on Snubber



Turn-on Snubber Operating Waveforms

<u>Small values of snubber inductance</u> $(L_s < L_{s1})$

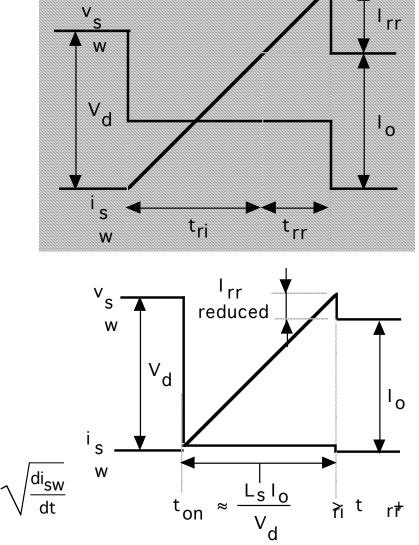
• $\frac{di_{sw}}{dt}$ controlled by switch S_w and drive circuit.

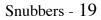
• $\Delta v_{SW} = \frac{L_S I_O}{t_{ri}}$

•
$$\frac{\text{Large values of snubber inductance }(L_{\text{S}} > L_{\text{S1}})}{\text{dt}}$$
 limited by circuit to $\frac{V_{\text{d}}}{L_{\text{S}}} < \frac{I_{\text{o}}}{t_{\text{ri}}}$

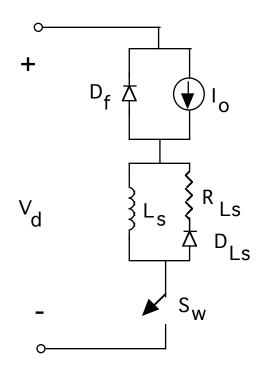
•
$$L_{s1} = \frac{V_d t_{ri}}{I_o}$$

• I_{rr} reduced when $L_s > L_{s1}$ because I_{rr} proportional to γ

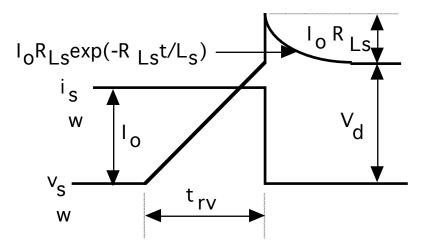




Turn-on Snubber Recovery at Switch Turn-off



- Assume switch current fall time $t_{ri} = 0$.
- Inductor current must discharge thru D_{Ls}- R_{Ls} series segment.



- Switch waveforms at turn-off with turn-on snubber in circuit.
- Overvoltage smaller if t_{fi} smaller.
- Time of 2.3 L_s/R_{Ls} required for inductor current to decay to 0.1 I_o
- Off-time of switch must be > $2.3 L_s/R_{Ls}$

Copyright © by John Wiley & Sons 2003

Turn-on Snubber Design Trade-offs

Selection of inductor

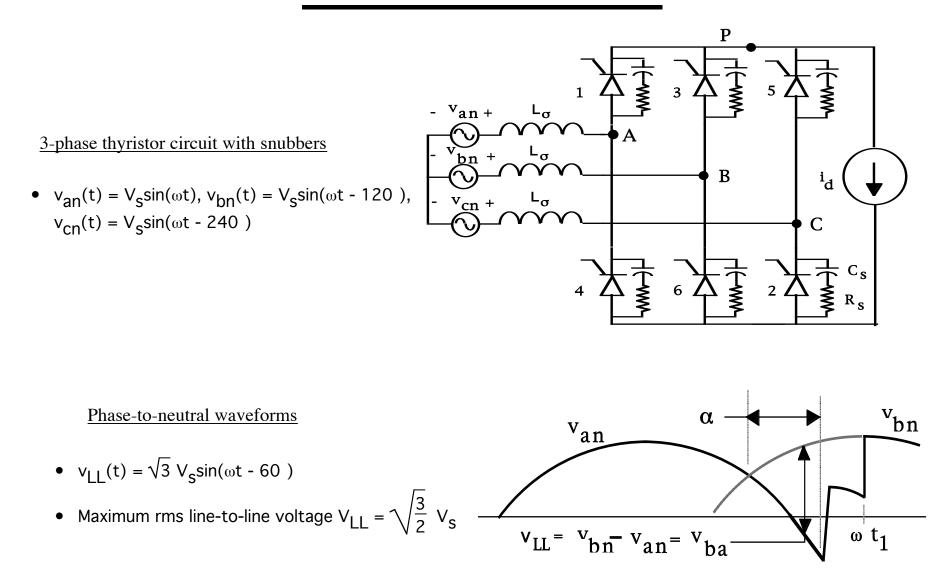
- Larger L_s decreases energy dissipation in switch at turn-on
 - $W_{sw} = W_B (1 + I_{rr}/I_o)^2 [1 L_s/L_{s1}]$
 - $W_B = V_d I_o t_{fi}/2$ and $L_{s1} = V_d t_{fi}/I_o$
 - $L_s > L_{s1}$ $W_{sw} = 0$
- Larger L_s increases energy dissipation in R_{Ls}
 - $W_R = W_B L_s / L_{s1}$
- $L_s > L_{s1}$ reduces magnitude of reverse recovery current I_{rr}
- Inductor must carry current I₀ when switch is on makes inductor expensive and hence turn-on snubber seldom used

Selection of resistor R_{Ls}

- Smaller values of R_{Ls} reduce switch overvoltage $I_0 R_{Ls}$ at turn-off
- Limiting overvoltage to $0.1 V_d$ yields $R_{Ls} = 0.1 V_d / I_o$
- Larger values of R_{Ls} shortens minimum switch off-time of 2.3 L_s/R_{Ls}

Copyright © by John Wiley & Sons 2003

Thyristor Snubber Circuit

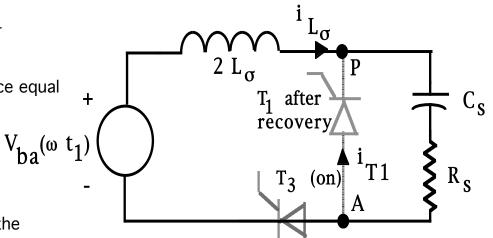


Snubbers - 22

Equivalent Circuit for SCR Snubber Calculations

Assumptions

- Trigger angle $\alpha = 90$ so that $v_{LL}(t) = maximum = \sqrt{2} V_{LL}$
- Reverse recovery time $t_{rr} \ll$ period of ac waveform so that $v_{LL}(t)$ equals a constant value of $v_{ba}(\omega t_1) = \sqrt{2} V_{LL}$
- Worst case stray inductance ${\rm L}_{\sigma}$ gives rise to reactance equal to or less than 5% of line impedance.
- Line impedance = $\frac{V_s}{\sqrt{2}I_{a1}} = \frac{\sqrt{2}V_{LL}}{\sqrt{6}I_{a1}} = \frac{V_{LL}}{\sqrt{3}I_{a1}}$ where I_{a1} = rms value of fundamental component of the line current.
- $\omega L_{\sigma} = 0.05 \frac{V_{LL}}{\sqrt{3}I_{a1}}$



Component Values for Thyristor Snubber

- Use same design as for diode snubber but adapt the formulas to the thyristor circuit notation
- Snubber capacitor $C_s = C_{base} = L_{\sigma} \left[\frac{I_{rr}}{V_d}\right]^2$

• From snubber equivalent circuit 2
$$L_{\sigma} \frac{di_{L\sigma}}{dt} = \sqrt{2} V_{LL}$$

•
$$I_{rr} = \frac{di_{L\sigma}}{dt} t_{rr} = \frac{\sqrt{2}V_{LL}}{2L_{\sigma}} t_{rr} = \frac{\sqrt{2}V_{LL}}{2!\frac{0.05!}{\sqrt{3}!} V_{LL}} t_{rr} = 25 \omega I_{a1} t_{rr}$$

•
$$V_d = \sqrt{2} V_{LL}$$

•
$$C_{s} = C_{base} = \frac{0.05! V_{LL}}{\sqrt{3!} I_{a1}\omega} \left[\frac{25! \omega I_{a1}t_{rr}}{! \sqrt{2}V_{LL}}\right]^{2} = \frac{8.7! \omega I_{a1}t_{rr}}{V_{LL}}$$

• Snubber resistance $R_s = 1.3 R_{base} = 1.3 \frac{V_d}{I_{rr}}$

•
$$R_s = 1.3 \frac{\sqrt{2}V_{LL}}{25\omega l_{a1}t_{rr}} = \frac{0.07! V_{LL}}{! \omega l_{a1}t_{rr}}$$

• Energy dissipated per cycle in snubber resistance = W_R

•
$$W_{R} = \frac{L_{o}I_{rr}^{2}}{2} + \frac{C_{s}V_{d}^{2}}{2} = 18 \text{ } \omega I_{a1} V_{LL}(t_{rr})^{2}$$

Copyright © by John Wiley & Sons 2003