Exercise 1

The voltages and current in the boost converter of figure 1 are $U_d = 12$ V, $U_o = 24$ V, $I_o = 1$ A and the value of the components are $L = 150\mu$ H, $C = 470\mu$ F and the switching frequency is $f_s = 20$ kHz. Calculate the variation in the output voltage ΔU_o .

Figure 1: Boost converter.

Exercise 2

The voltages and current in the boost converter of figure 1 are $U_d = 12$ V, $U_o = 24$ V, $I_o = 1$ A with a capacitor of $C = 470\mu$ F and a switching frequency of $f_s = 20$ kHz. Calculate the choke peak current $i_{L,peak}$, which is also the peak value of the switch current $i_{K,peak}$,

- a) when the choke value is $L = 150 \mu$ H. What happens is the value of the choke is higher?
- b) when the choke value is $L = 50 \mu$ H.

Calculate the ratio of the peak current of the choke with its average values, i.e. $i_{L,peak}/I_L$, as a function of L_{oB}/L . L_{oB} the minimal value of the choke L to keep the circuit working in the continuous conduction mode (CCM).

Exercise 3

Using figure 1, calculate the rms-value of the current i_D (figure 2) which is also the current in capacitor C, i_C , rms-value. The characteristic of the circuit are: $8 \leq U_d \leq 16$ V, $U_o = 24$ V, $I_o = 1$ A, the output power $P_o \geq 5$ W, $C = 470\mu$ F, $L = 427\mu$ H, $f_s = 20$ kHz and the duty ratio D = 0, 5.

Figure 2: Diode current $i_D(t)$.