Exercise 1

The voltages and current in the boost converter of figure 1 are $U_{d}=12 \mathrm{~V}, U_{o}=24 \mathrm{~V}, I_{o}=1 \mathrm{~A}$ and the value of the components are $L=150 \mu \mathrm{H}, C=470 \mu \mathrm{~F}$ and the switching frequency is $f_{s}=20 \mathrm{kHz}$. Calculate the variation in the output voltage ΔU_{o}.

Figure 1: Boost converter.

Exercise 2

The voltages and current in the boost converter of figure 1 are $U_{d}=12 \mathrm{~V}, U_{o}=24 \mathrm{~V}, I_{o}=1 \mathrm{~A}$ with a capacitor of $C=470 \mu \mathrm{~F}$ and a switching frequency of $f_{s}=20 \mathrm{kHz}$. Calculate the choke peak current $i_{L, \text { peak }}$, which is also the peak value of the switch current $i_{K, p e a k}$,
a) when the choke value is $L=150 \mu \mathrm{H}$. What happens is the value of the choke is higher?
b) when the choke value is $L=50 \mu \mathrm{H}$.

Calculate the ratio of the peak current of the choke with its average values, i.e. $i_{L, p e a k} / I_{L}$, as a function of $L_{o B} / L . L_{o B}$ the minimal value of the choke L to keep the circuit working in the continuous conduction mode (CCM).

Exercise 3

Using figure 1, calculate the rms-value of the current i_{D} (figure 2) which is also the current in capacitor C, i_{C}, rms-value. The characteristic of the circuit are:
$8 \leq U_{d} \leq 16 \mathrm{~V}, U_{o}=24 \mathrm{~V}, I_{o}=1 \mathrm{~A}$, the output power $P_{o} \geq 5 \mathrm{~W}, C=470 \mu \mathrm{~F}, L=427 \mu \mathrm{H}$, $f_{s}=20 \mathrm{kHz}$ and the duty ratio $D=0,5$.

Figure 2: Diode current $i_{D}(t)$.

