Exercise 1

The Series load resonant (SLR) DC-DC converter of figure 1 works in discontinuous conduction mode (DCM) at a switching frequency ω_{s} smaller than the resonant frequency $\omega_{0}=1 \sqrt{L_{r} C_{r}}$ of the $L C$-circuit. The switching frequency is set to be $\omega_{s}<\omega_{0} / 2$.

Figure 1: SLR DC-DC converter.
a) Show that the choke maximal current ratio is

$$
\begin{equation*}
\frac{I_{L_{r}, \text { peak }}}{I_{b}}=1+2 \frac{V_{o}}{V_{d}}, \quad \text { with } I_{b}=\frac{V_{d}}{2 Z_{0}} \text { and } Z_{0}=\sqrt{\frac{L_{r}}{C_{r}}} \tag{1}
\end{equation*}
$$

b) Show that the voltage ratio of the peak value over the capacitor C_{r} is

$$
\begin{equation*}
\frac{V_{C_{r}, \text { peak }}}{V_{b}}=2 \quad \text { with } V_{b}=\frac{V_{d}}{2} \tag{2}
\end{equation*}
$$

c) Show that the SLR-converter can only work as a voltage step-down.

The instantaneous voltage over C_{r} and current in the resonant circuit can be expressed as

$$
\begin{equation*}
v_{C_{r}}(t)=V_{i n}-\left(V_{i n}-V_{C 0}\right) \cos \left(\omega_{0} t\right)+Z_{0} I_{L 0} \sin \left(\omega_{0} t\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
i_{L_{r}}(t)=I_{L 0} \cos \left(\omega_{0} t\right)+\frac{V_{i n}-V_{C 0}}{Z_{0}} \sin \left(\omega_{0} t\right) \tag{4}
\end{equation*}
$$

where $V_{A B^{\prime}}$ is the input voltage of the resonant circuit (figure 2), $V_{C 0}$ is the initial voltage over C_{r}, and $I_{L_{0}}$ the initial current of L_{r}.

Figure 2: SLR DC-DC converter; discontinuous-conduction mode with $\omega_{s}<\frac{1}{2} \omega_{0}$.

Exercise 2

In the figure, a ZCS (Zero current switch) DC-DC converter is represented.

Figure 3: ZCS resonant switch DC-DC converter.

The characteristics of the circuit are as follow:
-the resonance frequency $f_{0}=1 \mathrm{MHz}$
-The characteristic impedance $Z_{0}=10 \Omega$
-the input voltage is $V_{d}=15 \mathrm{~V}$
-the output voltage is $V_{o}=10 \mathrm{~V}$
-the output power $P_{o}=10 \mathrm{~W}$
Obtain the instantaneous current $i_{T}(t)$ and voltage $u_{C_{r}}(t)$ over the capacitor C_{r}, and the time intervals $t 1-t 0, t_{1}^{\prime}-t_{1}, t_{1}^{\prime \prime}-t_{1}, t_{2}-t_{1}, t_{3}-t_{2}, t_{3}-t_{4}$. Calculate the maximal and minimal value of $i_{T}(t)$ and $u_{C_{r}}(t)$. What is the switching frequency f_{s} ?

Figure 4: ZCS resonant-switch DC-DC converter waveforms.

The resonant circuit with a parallel load has the following equations: the current in the choke L_{r} is

$$
\begin{equation*}
i_{L_{r}}(t)=I_{o}+\left(I_{L 0}-I_{o}\right) \cos \left(\omega_{0} t\right)+\frac{V_{d}-V_{C 0}}{Z_{0}} \sin \left(\omega_{0} t\right) \tag{5}
\end{equation*}
$$

and the voltage over the capacitor C_{r}

$$
\begin{equation*}
v_{C_{r}}(t)=V_{d}-\left(V_{d}-V_{C 0}\right) \cos \left(\omega_{0} t\right)+Z_{0}\left(I_{L 0}-I_{o}\right) \sin \left(\omega_{0} t\right) \tag{6}
\end{equation*}
$$

The initial values are $V_{C 0}$ for the capacitor C_{r} and $I_{L 0}$ for the inductance L_{r}.

