Exercise 1

The Series load resonant (SLR) DC-DC converter of figure 1 works in discontinuous conduction mode (DCM) at a switching frequency ω_{s} smaller than the resonant frequency $\omega_{0}=1 \sqrt{L_{r} C_{r}}$ of the $L C$-circuit. The switching frequency is set to be $\omega_{s}<\omega_{0} / 2$.

Figure 1: SLR DC-DC converter.
a) Show that the choke maximal current ratio is

$$
\begin{equation*}
\frac{I_{L_{r}, \text { peak }}}{I_{b}}=1+2 \frac{V_{o}}{V_{d}}, \quad \text { with } I_{b}=\frac{V_{d}}{2 Z_{0}} \text { and } Z_{0}=\sqrt{\frac{L_{r}}{C_{r}}} \tag{1}
\end{equation*}
$$

b) Show that the voltage ratio of the peak value over the capacitor C_{r} is

$$
\begin{equation*}
\frac{V_{C_{r}, \text { peak }}}{V_{b}}=2 \quad \text { with } V_{b}=\frac{V_{d}}{2} \tag{2}
\end{equation*}
$$

c) Show that the SLR-converter can only work as a voltage step-down.

The instantaneous voltage over C_{r} and current in the resonant circuit can be expressed as

$$
\begin{equation*}
v_{C_{r}}(t)=V_{A B^{\prime}}-\left(V_{A B^{\prime}}-V_{C 0}\right) \cos \left(\omega_{0} t\right)+Z_{0} I_{L 0} \sin \left(\omega_{0} t\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
i_{L_{r}}(t)=I_{L 0} \cos \left(\omega_{0} t\right)+\frac{V_{A B^{\prime}}-V_{C 0}}{Z_{0}} \sin \left(\omega_{0} t\right) \tag{4}
\end{equation*}
$$

where $V_{A B^{\prime}}$ is the input voltage of the resonant circuit (figure 2), $V_{C 0}$ is the initial voltage over C_{r}, and $I_{L_{0}}$ the initial current of L_{r}.

Figure 2: SLR DC-DC converter; discontinuous-conduction mode with $\omega_{s}<\frac{1}{2} \omega_{0}$.

Solution

Note: In the DCM mode, the waveforms with $\omega_{s}<\frac{1}{2} \omega_{0}$ are represented in figure 2. These waveforms are used to calculate the values. For each 4 states of the circuit the values $I_{L 0}$, $V_{C 0}$ and $V_{A B^{\prime}}$ have to be check from the graph and state-equivalent circuits.

By reading the figure 2, at the beginning, $t=0$, the switch T_{+}is conducting and the current in the choke L_{r} is $I_{L 0}=0 \mathrm{~A}$. At that same moment, the voltage over the capacitor C_{r} is $V_{C 0}=-2 V_{0}$. The voltage and current equations 3 and 4 in the $L C$-circuit can be rewritten by changing $V_{A B^{\prime}}$ to $\frac{V_{d}}{2}-V_{o}, V_{C 0}$ to $=-2 V_{o}$ and $I_{L 0}=0 \mathrm{~A}$. We obtain

$$
\begin{equation*}
v_{C_{r}}(t)=\frac{V_{d}}{2}-V_{o}-\left(\frac{V_{d}}{2}+V_{o}\right) \cos \left(\omega_{0} t\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
i_{L_{r}}(t)=\frac{\frac{V_{d}}{2}+V_{o}}{Z_{0}} \sin \left(\omega_{0} t\right) \tag{6}
\end{equation*}
$$

Part a

From the equation 6, we get the peak value of the current in the choke

$$
\begin{equation*}
\hat{i}_{L_{r}}=\frac{\frac{V_{d}}{2}+V_{o}}{Z_{0}} \tag{7}
\end{equation*}
$$

The current ratio is then

$$
\begin{equation*}
\frac{\hat{i}_{L_{r}}}{I_{b}}=\frac{\frac{\frac{V_{d}}{2}+V_{o}}{Z_{0}}}{\frac{V_{d}}{2 Z_{0}}}=1+2 \frac{V_{o}}{V_{d}} \tag{8}
\end{equation*}
$$

Part b

For this, we check the value of $u_{C_{r}}(t)$ at $t=0$ and $t=t_{1}$. Using equation 5 , we have at $t=0$,

$$
\begin{equation*}
v_{C_{r}}(0)=-2 V_{o} \tag{9}
\end{equation*}
$$

The voltage $v_{C_{r}}$ is maximal at $t=t_{1}$, which is when $i_{L_{r}}(t)=0$ (figure 2). The equation 6 is equal to zero when $\omega_{0} t=0+k \pi \forall k \in \mathbb{N}$. With the equation 5 at $t=t_{1}$

$$
\begin{equation*}
v_{C_{r}}\left(t_{1}\right)=v_{C_{r}, \max } \frac{V_{d}}{2}-V_{o}+\left(\frac{V_{d}}{2}+V_{o}\right)=V_{d} \tag{10}
\end{equation*}
$$

and the ratio is then

$$
\begin{equation*}
\frac{v_{C_{r}, \max }}{V_{b}}=\frac{V_{o}}{\frac{V_{o}}{2}}=2 \tag{11}
\end{equation*}
$$

Part c

The current $i_{L_{r}}$ at $t=t_{1}$ and after can be expressed as

$$
\begin{equation*}
i_{L_{r}}(t)=\frac{\frac{V_{d}}{2}+V_{o}-V_{C 0}}{Z_{0}} \sin \left(\omega_{0} t\right)=\frac{V_{o}-\frac{V_{d}}{2}}{Z_{o}} \sin \left(\omega_{0} t\right) \tag{12}
\end{equation*}
$$

as $V_{A B^{\prime}}=\frac{V_{d}}{2}+V_{o}$ and the initial values $V_{C 0}=V_{d}$ and $I_{L 0}=0 \mathrm{~A}$ (figure 2).
The current in the choke at an instant $t \geq t_{1}$ has a lower peak amplitude than in $0 \leq t \leq t_{1}$. For the circuit to work as a step-down converter, the peak value after of the current t_{1} must be negative, i.e.

$$
\begin{equation*}
\frac{V_{o}-\frac{V_{d}}{2}}{Z_{0}}<0 \Leftrightarrow V_{o}<\frac{V_{d}}{2} \tag{13}
\end{equation*}
$$

The circuit works as a step-down because the output voltage is smaller than the input.

Exercise 2

In the figure, a ZCS (Zero current switch) DC-DC converter is represented.

Figure 3: ZCS resonant switch DC-DC converter.

The characteristics of the circuit are as follow:
-the resonance frequency $f_{0}=1 \mathrm{MHz}$
-The characteristic impedance $Z_{0}=10 \Omega$
-the input voltage is $V_{d}=15 \mathrm{~V}$
-the output voltage is $V_{o}=10 \mathrm{~V}$
-the output power $P_{o}=10 \mathrm{~W}$
Obtain the instantaneous current $i_{T}(t)$ and voltage $u_{C_{r}}(t)$ over the capacitor C_{r}, and the time intervals $t 1-t 0, t_{1}^{\prime}-t_{1}, t_{1}^{\prime \prime}-t_{1}, t_{2}-t_{1}, t_{3}-t_{2}, t_{3}-t_{4}$. Calculate the maximal and minimal value of $i_{T}(t)$ and $u_{C_{r}}(t)$. What is the switching frequency f_{s} ?

Figure 4: ZCS resonant-switch DC-DC converter waveforms.

The resonant circuit with a parallel load has the following equations:
the current in the choke L_{r} is

$$
\begin{equation*}
i_{L_{r}}(t)=I_{o}+\left(I_{L 0}-I_{o}\right) \cos \left(\omega_{0} t\right)+\frac{V_{d}-V_{C 0}}{Z_{0}} \sin \left(\omega_{0} t\right) \tag{14}
\end{equation*}
$$

and the voltage over the capacitor C_{r}

$$
\begin{equation*}
v_{C_{r}}(t)=V_{d}-\left(V_{d}-V_{C 0}\right) \cos \left(\omega_{0} t\right)+Z_{0}\left(I_{L 0}-I_{o}\right) \sin \left(\omega_{0} t\right) \tag{15}
\end{equation*}
$$

The initial values are $V_{C 0}$ for the capacitor C_{r} and $I_{L 0}$ for the inductance L_{r}.

Solution

Since the characteristic impedance Z_{0} and the resonance frequency f_{0} are given, we can calculate the value of L_{r} and C_{r}.

$$
\begin{equation*}
Z_{0}=\sqrt{\frac{L}{C}} \Rightarrow \quad \frac{1}{L} Z_{0}=\frac{1}{\sqrt{L C}}=\omega_{0} \Rightarrow \quad L=\frac{Z_{0}}{\omega_{0}} \tag{16}
\end{equation*}
$$

the same way

$$
\begin{equation*}
Z_{0}=\sqrt{\frac{L}{C}} \Rightarrow \quad C Z_{0}=\sqrt{L C}=\frac{1}{\omega_{0}} \Rightarrow \quad C=\frac{1}{Z_{0} \omega_{0}} \tag{17}
\end{equation*}
$$

and their values are $L_{r}=1,591 \mu \mathrm{H}$ and $C_{r}=16,91 \mathrm{nF}$.
At $t=0$ the switch is conducting, the capacitor is at the beginning without voltage as the diode is conducting. The voltage V_{d} over the choke L_{r} makes its current rise linearly

$$
\begin{equation*}
\frac{d i_{T}(t)}{d t}=\frac{V_{d}}{L_{r}} \tag{18}
\end{equation*}
$$

and we get

$$
\begin{equation*}
t_{1}-t_{0}=\frac{L_{r}}{V_{d}} \approx 0,106 \mu \mathrm{~s} \tag{19}
\end{equation*}
$$

As the current i_{T} increases, the current in the diode decreases till $i_{T}=I_{o}$ and the diode stop conducting at the instant $t=t_{1}$. The current in the resonant circuit increases and the voltage in the capacitor C_{r} also increases with the current $i_{T}-I_{o}$.
To calculate the time interval $t_{2}-t_{1}$, we can use the equations 14 and 15 . The initial value at $t=t_{1}$ are $I_{L 0}=I_{o}$ and $I_{C 0}=0 \mathrm{~V}$ and we get

$$
\begin{align*}
& i_{L_{r}}(t)=I_{o}+\frac{V_{d}}{Z_{0}} \sin \left(\omega_{0} t\right) \tag{20}\\
& v_{C_{r}}(t)=V_{d}-V_{d} \cos \left(\omega_{0} t\right) \tag{21}
\end{align*}
$$

The current is maximal when $\sin \left(\omega_{0} t_{1}^{\prime}\right)=1$ and we have $t_{1}^{\prime}-t_{1}=\frac{\pi}{2 \omega_{0}} \approx 0,25 \mu \mathrm{~s}$.
And the maximal current is

$$
\begin{equation*}
i_{T, \max }=I_{o}+\frac{V_{d}}{Z_{0}} \approx 2,5 \mathrm{~A} \tag{22}
\end{equation*}
$$

The voltage over the capacitor is a $t=t_{1}^{\prime}$

$$
\begin{equation*}
v_{C_{r}}\left(t_{1}^{\prime}\right)=V_{d}\left(1-\cos \left(\frac{\pi}{2}\right)\right)=V_{d}=15 \mathrm{~V} \tag{23}
\end{equation*}
$$

and its maximal value at $\omega_{0} t_{1}^{\prime \prime}=\pi$ (eq.21) and we get

$$
\begin{equation*}
v_{C_{r}, \max }=V_{d}(1-\cos (\pi))=2 V_{d}=30 \mathrm{~V} \tag{24}
\end{equation*}
$$

The time interval $t_{1}^{\prime \prime}-t_{1}=\pi / \omega_{0} \approx 0,5 \mu \mathrm{~s}$.
Using the equation 20 at $t=t_{1}^{\prime \prime}$, we obtain $i_{L_{r}}\left(t_{1}^{\prime \prime}\right)=I_{o}$.
The time interval $t_{2}-t_{1}$ can be obtain from equation 20 when it is equal to zero. and we get

$$
\begin{equation*}
i_{T}\left(t_{2}\right)=I_{o}+\frac{V_{d}}{Z_{0}} \sin \left(\omega_{0} t_{2}\right)=0 \tag{25}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\sin \left(\omega_{0} t_{2}\right)=\arcsin \left(\frac{-I_{o} Z_{0}}{V_{d}}\right) \approx-0,7297 \tag{26}
\end{equation*}
$$

And we obtain $t_{2}-t_{1}=0,616 \mu \mathrm{~s}$.
The current in the choke L_{r} is zero at the instant t_{2} and using the equation 21, the voltage of the capacitor is

$$
\begin{equation*}
v_{C_{r}}\left(t_{2}\right)=V_{d}(1-\cos (\pi+0,729)) \approx 26,2 \mathrm{~V} \tag{27}
\end{equation*}
$$

After that, the current current remains constant and the voltage of the capacitor is decreasing linearly till it becomes zero at $t=t_{3}$. We can write

$$
\begin{equation*}
\Delta t=t 3-t 2=\frac{C}{I_{o}} \Delta V_{C r}=\frac{C}{I_{o}} \Delta V_{C r}\left(t_{3}\right)-V_{C_{r}}\left(t_{2}\right) \approx 1,139 \mu \mathrm{~s} \tag{28}
\end{equation*}
$$

The voltage over the capacitor C_{r} is also the voltage over the diode and the output voltage. The output filter is tuned to have an average output voltage of V_{d}. The voltage over the capacitor C_{r} at different time is

$$
\begin{array}{cl}
v_{C_{r}}(t)=V_{d}-V d \cos \left(\omega_{0} t\right), & t_{1}<t_{2}, \quad t_{2}-t_{1}=T_{1} \approx 0,616 \mu \mathrm{~s} \\
v_{c}(t)=V_{o}-\frac{I_{o}}{C} t=26,2-\frac{I_{o}}{C_{r}} t, & t_{2}<t<t_{3}, \quad, t_{3}-t_{2}=T_{2} \approx 0,417 \mu \mathrm{~s} \tag{30}
\end{array}
$$

We calculate the average of $u_{C_{r}}(t)$ which is equal to V_{o} and we obtain

$$
\begin{equation*}
V_{o}=\frac{1}{T_{s}}\left(\int_{0}^{T_{1}} V_{d}\left(1-\cos \left(\omega_{0} t\right)\right) d t+\int_{0}^{T_{2}}\left(V_{o}-\frac{I_{o}}{C} t\right) d t\right) \tag{31}
\end{equation*}
$$

where the switching period $T_{s}=t_{1}+T_{1}+T_{2}+T_{3}$ with $T_{3}=t_{4}-t_{3}$. after solving the integral, we obtain

$$
\begin{equation*}
V o=\frac{1}{T_{s}}\left(V_{d} T_{1}-\frac{1}{\omega_{0}} \sin \left(\omega_{0} T_{1}\right)+V_{o} T_{2}-\frac{I_{o}}{2 C_{r}} T_{2}^{2}\right) \tag{32}
\end{equation*}
$$

and with the numerical values, we get $T_{s}=1,63 \mu \mathrm{~s}$ and so the switching frequency is $f_{s}=$ 614 kHz . And the last time interval $t_{4}-t_{3}=T_{3}=T_{s}-T_{1}-T_{2}-t_{1}=0,490 \mu \mathrm{~s}$.

