Exercise 1

Obtain the small signal transfer function $\frac{\tilde{v}_o(s)}{\tilde{d}(s)}$ of a Flyback-converter working in continuous

conduction mode (CCM). \tilde{v}_0 is the small perturbation in the output signal $v_o(t)$ and \tilde{d} is the small perturbation in the switch duty ration d(t). For the sake of simplicity, the ratio of the transformer N1/N2 = 1 and the components are assumed to be ideal.

Draw the Bode-diagram when $V_d=24\mathrm{V},\,V_o=12\mathrm{V}$ and the resistance of the load is $R=5\Omega$. The switching frequency is $f_s=200\mathrm{kHz}$ and the values of the components are $L=10\mu H$ and $C=100\mu\mathrm{F}$.

Exercise 2

Obtain the transfer function $\frac{\tilde{v}_o(s)}{\tilde{d}_1(s)}$ of a flyback converter working in discontinuous conduction mode (DCM). It is assumed that in the converter is with a feedback loop. The rest of the values are in the previous exercise. What is the value of R that set the converter working at the limit of CCM and DCM? Draw the Bode diagram when the resistive load $R=15\Omega$.