Aalto University School of Engineering

EEN-E3002 Power Process Simulation Introduction

Process Simulation on Aspen Plus®

AIChE

WILEY

Mika Järvinen 3th March, 2022

What is a process flowsheet?

- A process flowsheet can simply be considered as a computational blue print of a plant or process layout.

- A basic flowsheet includes all input material and energy streams, *boundary (or scope)-specific* unit operations, inter-stage chemical and/or physical conversion mechanisms and finally the product streams.

What is a process flowsheet?

An example from a student group project 3 years ago, H_2 gas from biomass

Above block diagram (or process units) is what they started with...

below (mass/heat/chemistry conversion steps) is what they ended at

Why do we do process modelling?

- **Practicality:** COST (Time – Materials – Risk)

- Advantages of Computer-aided process simulation:

- Reduces plant design time as it allows designers to quantitatively assess the performance of various plant configurations.
- Improve existing operations by answering "What If" scenarios. (Retrofit studies)
- Determine optimal process conditions within given constraints.
- Debottleneck the constraining or limiting sections of a plant (heat, water and material integration studies).

Disadvantage of Computer-aided process simulation:

"Manual solution of a problem usually forces someone to think deeper on the problem, find novel approaches to solve it, and evaluate and reevaluate the assumptions closer. A drawback of process flowsheet simulators may be cited as the lack of this detailed interaction with the problem. This might act as a double-edged sword.

On one side it hides the complexities of a problem so you can concentrate on the real issues at hand. On the other side this hiding may also hide some important understanding of the problem as well." ¹

Aalto University

When do we use process modelling?

representation and

realized plant.

optimized version of

more detailed models to address new research questions and specific physical phenomena are developed in an iterative fashion.

Aalto University

hazards and risk.

Important Guide

Keep in mind

Your model is as good as the ability to answer the questions set

- 1- The predefined outer boundary conditions and inner level of complexity.
- 2- The input information you provided for the model.
- 3- The interpretation extracted from the model results.

Always validate (justify) your modelling approach.

Steady-state vs Dynamic simulation models?

- Steady state models are characterized with the absence of time-determent variables.
- Steady state models generally constitute continuous processes, Aspen Plus as a software is initially designed for such systems.

Input – Output + Sources/Sinks = 0

- However, you are able to imitate slowly changing processes with sequential steady states, think if this could be the case.
- For true transient cases, Aspen HYSYS is the required software, Aalto has also license for this.

Architecture of process simulators

1) Sequential: (modular)

Step-wise approach, where the overall system is broken into smaller units (process step) and calculated each at a time, depending on the direction of resources, from input to output.

In case of recycle, iteration is performed

Initiation (guessed) value is compared to calculated variable until error is below tolerance – **Model Converges.**

2) Equation oriented: (non-modular)

All unknown variables are combined into one large matrix of non-linear algebraic equations and simultaneously solved.

3) Combination of both.

Architecture of process simulators

1) Black box: (empirical)

Purely mathematic solving capabilities. Statistical analysis of available process data to obtain correlations (normally without a physical meaning) and test the validity of each to narrow down a list of applicable equations to solve the model.

2) White box: (mechanistic)

More accurate and deterministic approach, however requires extensive information available.

The model is built based on available fundamental thermo-physical principles like

- Mass and Energy balance.
- Equilibrium relationships.
- Rate correlations (chemical reactions and mass/heat transfer).

For complex chemical systems you will not have all determinstic data available for a White box approach so process simulaters combine both in (so called Grey box models).

Architecture of process simulators

Figure 4.4. A typical simulation program.

Towler and Sinnott, "Chemical Engineering Design: Principles, Practice, Economics of Plant and Process Design", Elsevier (2008)

Examples of process simulation tools

Commercial steady-state process simulators:

Sequential

- Aspen Plus
- Aspen Hysys
- ChemCheet
- PRO II
- UniSim
- Many others

Open source:

- DWSIM (link)
- COCO (<u>link</u>)

Equation-oriented

- gProms
- VMGSim
- Aspen Custom Modeler

ASCEND (<u>link</u>)

Intended learning outcomes of the course (Aspen Plus®)

- Understand the governing principles of process modelling/flowsheeting. (Today's lecture)
- Build a steady-state model and simulate a pre-designed power production processes on Aspen Plus®.
- Utilizing the software to formulate material and energy balances in order to evaluate different feedstock, energy conversion technologies and operational design conditions for power production.
- Acquire the necessary skills and the know-how of basic flowsheeting tools in Aspen Plus

 ß for future process design and synthesis projects.

Planned Activities (Aspen Plus® part)

- - Reading assignment No submission needed.
- Learning Exercise 1 (Wednesday 9.3): Familiarize with Aspen Plus® interface, building a simplified Rankine cycle model and equilibrium combustion process.
 - Submission deadline Wednesday 16.3 at 14:00.
- Learning Exercise 2 (Wednesday 16.3): Building a model for a solid fuel combustion.
 - Submission deadline Wednesday 23.3 at 14:00.
- Period V project:
 - CHP case study, different process values for different groups.
 - Instructions will be shared on MyCourses.

Practicalities (Aspen Plus® part)

- You need to use vdi.aalto.fi interface to access Aspen Plus from home. Please see instructions from course MC home page.
- Additional literature will be shared during the course on relevant topics as extra reading.
- Books
 - Chavez, Ivan. *Process Analysis and Simulation in Chemical Engineering*, Springer International Publishing, 2016.
 - Sandler, Stanley I. Using Aspen plus in thermodynamics instructions : a step by step guide. the American Institute of Chemical Engineers and John Wiley & Sons, 2015.

VERY IMPORTANT: You only have the right to use Aspen Plus® in work related to the activities of this course. If you want to apply to another personal project, please consult the instructors.

Introduction to Aspen Plus®

- In 1970s the researchers at MIT Energy Laboratory developed a prototype for process simulation. They called it Advanced System for Process Engineering (ASPEN). This software was later commercialized in 1980s by the foundation of a company named AspenTech.
- Aspen plus® has wide range of components (materials) available for simulation and are known as conventional compounds, also non-conventional compounds could be defined based on their elemental analysis. Other features available are modelling solids, petroleum pseudo compounds and electrolytes (aqueous salts).
- Aspen plus® V8.8 has built in library for unit operations (conservation equations) for mixer/splitters, separators, heat exchangers, pressure changers, reactors, distillation columns, manipulators, solids handling and custom user models.

Selecting flowsheet species

/) (X) = 1	Simulation 1 - Aspen Plus V8.8 -	aspenÖNE	•		_ 0 ×	
File Home View Cu	stomize Resources				Search aspenONE Exchang	je 🔽 a 🌚 83	
6 Cut METCBAR - 📝 Setu	p Na ⁺ Chemistry 📝 🏖 Methods Assistant 🔤 NIST	🕼 Analysis 🔥 🚺 📷 🗋 Input 🔄 Pure 🛕 Ternary	Diag				
🚡 Copy 🚔 Unit Sets 🛛 👧 Con	nponents 🖉 Customize 🛛 🖉 📢 Clean Parameters 🛞 DECHE	MA Testimation Next Run Reset Control	Curves				
Paste 🛛 🔏 Met	hods (B) Prop Sets Structure (Retrieve Parameters	Annual Panel Banel Banel Motore Analysis	lope				
roperties (Components - Specifications × +	ce kun s Junnary Analysis					
Il Items	Selection Petroleum Nonconventional Databanks Informa	tion					
📷 Setup							
Components	Select components						
Molecular Structure	Component ID Type	Find Compounds					
🔁 Assay/Blend		Compounds Databanks					
Light End Properties	Find Elec Wizard User Defined Reorder	Search Criteria					
Pseudocomponents		© Begins with				-	Simulation 1 - Aspen Plus V8.8 - aspen@
Component Attributes		Name or Alias: CO2 Fin	Home View Customize Resol	urces			
UNIFAC Groups		© Equals	a Copy 🍄 Unit Sets 🛛 Components 🖉 Cust	tomize	meters 🛞 DECHEMA 🕼 Est	mation	History & Binary & Residue Curves
Polymers		Compound class:	Paste A Methods A Prop	Draw Sets Structure A Retrieve Pa	rameters	Next Run Reset Co pression P	antrol BReport C Mixture M PT Envelope
Chemistry		Molecular weight: From To	lipboard Units Navigate	Tools	Data Source Run	Mode Run	🕫 Summary Analysis
Property Sets		Boiling point: From To C V	roperties < Estimation ×	Control Panel × Pure Componer	nts - REVIEW-1× +		
Data		A	II Items 🔹 🌍 Input 🛛 Info	ormation			
Analysis		Compounds found matching the specified criteria	Components	ent scalar parameters	4 3	1	
🗀 Customize		Compound name Alias Databank Alternate name MW BP <c></c>	Specifications Parame	eters Units Data set	Component Component	Component Component	Component
Results		SILVER-ACETATE AGCH3CO2 ADUEDUS 166.9	Molecular Structure		CARBO-01 * METHA-01 *	WATER - OXYGE-01 -	* · · · · · · · · · · · · · · · · · · ·
		AG(CH3COO)2- AG(CH3CO2) AQUEOUS 225,9	VNIFAC Groups	1	340 340	10 340	
		AG2(CH3COO)+ AG2(CH3CO) AQUEOUS 274,7	Polymers CHARGE	E 1	0 0	0	
		AMMONIUM-FORI HCO2NH4 AQUEOUS 63,05 4	Methods DGFORM	M cal/mol 1	-94193,7 -12059,3	-54593,5 0	
		CACHSCO2+ CACHSCO2+ AQUEOUS 99,12	Selected Methods	M cal/mol 1		-56549,2	
		Add selected compounds	A Parameters	M cal/mol 1	-98834,4 -21200,8	-2/94,5	
		Matches found: 277 (1 second)	CPIGDP-1	w cal/mol 1	-93900,2 -17790,0	-5/757,2 0	
			CPSDIP-1	al/mol 1	2000.08 1051.68	0710.57 1620.62	
			OHVLDP-1 ERFEZEP ERFEZEP	PT C 1	-56.57 -182.456	0 -218,789	
			Ø DNSDIP-1	cal/mol 1	-191702	0	
Propertier			KI DIP-1	debye 1	0 0	1,84972 0	
A roperacy			MULDIP-1	1	44,0098 16,0428	18,0153 31,9988	
H ^O Simulation			MUVDIP-1 OMEGA	1	0,223621 0,0115478	0,344861 0,0221798	
Safety Analysis			PLXANT-1 PC REVIEW-1	bar 1	73,83 45,99	220,64 50,43	
24)			SIGDIP-1	1	0,27256 0,28927	0,243172 0,28924	
V Energy Analysis			THRSWT-1 S025E	cal/mol-K 1	50,3696 63,7958	48,9985	
*	*[m	WATSOL-1	1	0,3 0,3	1 0,3	
			Binary Interaction	C 1	-78,45 -161,49	100 -182,962	
i i i i i i i i i i i i i i i i i i i	Evennle e met	thene combustion process		C 1	31,06 -82,586	373,946 -118,57	
	Example a me	mane compusiion process		cc/mol 1	35,0189 37,9694	18,8311 28,0225	
Nota: V	'au pood to coloct all	naggible components inn	it and autout!!!	cc/mol 1	94 98,6	55,94/2 73,4	
inole: Y	ou need to select all	possible components linpl	at and output!!!	cc/moi 1	0.274 0.286	10,00 53,5578	
	(Defin	ing your problem)	-	1	0,214 0,280	0,229 0,288	
	(Denn	ing your problem)			1		

최고 Safety An:	alysis
《아 Energy An	alysis
Input Changed	Check Status

Example of Unit library in Aspen Plus®

Reactors

Model	Description	Purpose	Use
RStoic	Stoichiometric reactor	Stoichiometric reactor with specified reaction extent or conversion	Reactors where the kinetics are unknown or unimportant but stoichiometry and extent are known
RYield	Yield reactor	Reactor with specified yield	Reactors where the stoichiometry and kinetics are unknown or unimportant but yield distribution is known
REquil	Equilibrium reactor	Chemical and phase equilibrium by stoichiometric calculations	Single- and two-phase chemical equilibrium and simultaneous phase equilibrium
RGibbs	Equilibrium reactor	Chemical and phase equilibrium by Gibbs energy minimization	Chemical and/or simultaneous phase and chemical equilibrium. Includes solid phase equilibrium.
RCSTR	Continuous stirred tank reactor	Continuous stirred tank reactor	One, two, or three-phase stirred tank reactors with kinetics reactions in the vapor or liquid
RPlug	Plug flow reactor	Plug flow reactor	One, two, or three-phase plug flow reactors with kinetic reactions in any phase. Plug flow reactions with external coolant.
RBatch	Batch reactor	Batch or semi-batch reactor	Batch and semi-batch reactors where the reaction kinetics are known

RSTOIC as a reactor

nulation <	Economics		Energy			EDR Exchan	ger Feasil	oility	EDR				
Items *	Capital Cost Utility (Cost	Available I	Energy Savings					not available				
🔯 Setup 🔄 🛃		-				Unknown	OK	At Risk					
Specifications	USD USD/Y	/ear off	MW	% of Actual	off	0	0	0	•				
Calculation Options	Main Flowsheet X B1 (BStoic)	2) +			-								
Stream Class				Taxa Taxa T									
P Solids	Specifications Seactions	s 🕜 Combustion	Heat of Reaction	Selectivity PSD	Component	t Attr. Utility	Informatio	n					
Comp-Groups	Reactions												
Conting Options	Rxn No. Specificatio	on type Stoichi	ometry										
Stream Price	► 2 Frac, conversion	METHA	-01 + 2 OXYGE-01	> CARBO-01 + 2 WA	ATER								
Unit Sets													
Custom Units	New	Edit	Delete	Copy Paste		C		1.4					X
Report Options						5	J Edit Store	niometry					
Property Sets	Reactions occur in series						Position N		-				
🔁 Analysis							Reaction N	0. 02					
📷 Flowsheet							Reactants	;	1) (Products		
4 🔯 Section								Component	Coeffic	ient	Component	Coefficient	
I GLOBAL							MET	HA-01	-1		CARBO-01	1	
Custom Tables							OXY	GE-01	-2		WATER	2	
ka Streams													
4 🐼 SI													
O Input													
EO Variabler													
Stream Results (Cus							-						
A S2							Products	generation —					
Input							O Molar	extent		kmol/hr =			
Results							Fractic	onal conversion	1	of co	mponent METHA-01	*	
🛃 EO Variables													
🕎 Stream Results (Cus											Close		
Blocks						Ľ							
4 🐼 B1													
Setup													
<i>III</i> +													
Properties													
Cimulation									.m				
	Model Palette												
Safety Analysis	Mixers/Splitter	s Separators	Exchangers C	olumns Reactors	Pressure	e Changers	Manipulator	s Solids	Solids Separate	ors User Models			
			-										
Energy Analysis													
			-										
	Material Mixer	FSplit	SSplit										
		eitv											
		Sity											

RSTOIC stream result sheet

Simulation <	Economics		Energy				
All Items 🔹	Capital Cost U	Jtility Cost	Available	Energy Savings			
🖌 🎯 Setup							
Specifications	USD	USD/Year off	MW % of Actual off				
Stream Class	Main Flowsheet × CC (R	Stoic) - Stream Results ×	CC (RStoic) × +				
Solids	Material Heat Load	Vol.% Curves Wt. % C	urves Petroleum Polymers Solids				
📜 Comp-Groups	Dicplay Streams	Format EUL	Ctream Table				
Comp-Lists	Display Dicearits	Tornac TOLL	Sueanniable				
Stream Price		FUEL	• 02	• PRODUCT •			
Dirit Sets	Substream MIVED			~			
💿 Custom Units	Mala Flav Invalues						
Report Options	Mole Flow kmol/sec			0,124667 0 0,249334			
Property Sets	• CO2	0	0				
Flowsheet	CH4	0,124667	0				
🛛 📷 Streams	► H2O	0	0				
Þ 📷 FUEL 🗧	▶ 02	0	0,406265	0,156932			
▷ 100 02	Mass Frac						
	► CO2	0	0	0,365771			
⊿ 🔯 CC	CH4	1	0	0			
💽 Setup	H2O	0	0	0,299454			
Convergence	D2	0	1	0,334775			
Dynamic Block Options	Total Flow kmol/sec	0.124667	0.406265	0.53092			
EO Modeling	Total Flow kg/sec	2	13	15 _			
Results	Total Flow cum/sec	3 09039	10.071	186.33			
Stream Results	Tomostatura C	25	25	2047.95			
Stream Results (Cus	nemperature C	*	23	5541,05			
Utilities	Pressure bar	I	1	1			
🛅 Reactions	Vapor Frac	1	1	1			
🕞 🔀 Convergence	Liquid Frac	0	0	0			
Flowsheeting Options	Solid Frac	0	0	0			
Model Analysis Tools	Enthalpy J/kmol	-7,452e+07	-3,7253e-09	-1,7498e+07			
Results Summary	Enthalpy J/kg	-4,6451e+06	-1,164e-10	-619340			
Run Status	🕨 🕨 Enthalpy kW	-9290,17	-1,513e-12	-9290,17			
Streams	Entropy J/kmol-K	-80487,6	109,441	104193			
TT (10)	Entropy J/kg-K	-5017,07	3,42017	3687,95			
Properties	Density kmol/cum	0.0403401	0.0403401	0.00284942			

Reactor describing a stoichiometric reaction with 100% conversion

Physical property calculation in Aspen Plus®

90% of computation power goes into the retrieval (for pure) and prediction (for mixture) of the flowsheet components physical properties.

- The key thermodynamic property calculations performed in a process simulation is phase equilibrium.
- The general hypothesis: fugacity in vapor phase is equal to that in liquid phase at equilibria. (no more change in the system)
- In an ideal system, fugacity = vapor pressure of such component. However real mixtures exhibit significant non-ideal behavior.
- Non-ideality of a mixture of compounds is a function of the molecular interactions between such compounds.
- A simplified designation could be that Non-ideality is measured either with equation of states (EOS) for gases/vapor phases and activity coefficients for liquids.

Property package decision tree

Assignment (No submissions)

Warm up for the learning exercises by reading the chapter: Introduction to Aspen Plus® from the book "Teach Yourself the Basics of Aspen Plus" (2016), Second Edition. Ralph Schefflan. (Available in MyCourses.)

Thank you for your attention.