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In the previous lecture...

You:

> Understood the powerful concept of frequency response and its role in control
system design.

> Knew how to sketch a Bode plot and also how to obtain a computer-generated
Bode plot.

> Became familiar with log magnitude and phase diagrams.
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Learning outcomes...
...the student will:

> Learn how to plot the open-loop frequency response of the return ratio L(s)
> Use the Nyquist diagram to ascertain stability of the closed-loop system

> Infer more detailed information about the behavior of the closed-loop system
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The Return Ratio

7(s) 5 é(s) K(s) G(s) y(s)

H(s)

» The Return Ratio of a loop is defined as —1 times the product of all the terms
around the loop. In this case,

L(s) = (~1) x (—H(s)K(s)G(s) = H(s)K (s)G(s)

> Feedback control systems are often tested in this configuration as a final check
before closing the loop. Note that

e(s) = 71 r(s
() = T
i) = Tt
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The Nyquist diagram

Im (L(jw))

zL(jwq)
/16 (L(jw))

The Nyquist locus
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Example: Consider the integrator

G(s)=1/s
Then,
L (166w =1/
Gjw)=—=—=
e LG Gw) = —o0°

Recall the bode plot: The Nyquist plot is therefore:

o Im (G(]w))
D)
3
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- . . Re (G(jw))
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Example: Consider the system with first-order lag

1
G =
(®) 14 sT
Then,
G(jw)l = —=
1 |
G(]w) _ ﬁ N V1tw2T?2
Tow /G(jw) = — arctan(wT)
Recall the bode plot (T = 1): The Nyquist plot is therefore:

Im (G’(jw))

Magnitude (dB)
e

g
I
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o ®

Phase (deg)

10°
Frequency (radls)
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Example: Consider the system with second-order lag

1

G = ——
( ) (1+8T1)(1+ST2)
Then,
|G(jw)| = :
) = (1+jwT )1(1+ woTa) A
w w
Jeott Jwt2 /G (jw) = —arctan(wTh) — arctan(wT?)

Recall the bode plot (71 = 1, T> = 10): The Nyquist plot is therefore:
‘,‘;’ Im (G(jw))
: w = o

Re (G(jw))

g
I
©

Phase (deg)

Frequency (rad/s)
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Example: Consider the system with time delay, lag and integrator

efsTl

G(s) = ———

s(1+4 sT»)

Then,
. ) —jwT 1 1
|G| = e™?* | X 757 X [TemT
X e*jWTl =1
G(jw)

= =
jw(l +ij2) ZG( =/ —jwT — /(i _ .
jw) = Le (Jw) —Z(1 + jwT?)
—_— <~

—wT 90°
> Clearly, as w — 0, the |G(jw)| — co. But this is not enough information to sketch
the Nyquist diagram.
> How does |G(jw)| — oo?

> To answer this, we use Taylor series expansion around w = 0

ool —gwTh

, N (—jwT)™ —jwT —jwTh)?
efgwn:Z(lel) :1+(]w 1)+(JUJ1) +
n! 1! 2!
n=0

=1+ (—jwT2) + (—jwT2)? + (—jwT2)® + ... & 1 — juTs
1+ jwTs
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> How does |G(jw)| — co? (continued...)

> Therefore,

G(jw) —
jw

The bode plot (77 =1, T> = 10):

Bode Diagram

20

°
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1
j—w—(T1+T2)+M

0

The Nyquist plot is therefore:

(i +71y)

Im (G(jw))

Re (G(jw))
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Sketching Nyquist diagrams

> Unlike the Bode diagram, there are no detailed rules for sketching Nyquist
diagrams

> Suffices to determine the asymptotic behavior as w — 0 and w — oo (using the
techniques we have seen in the examples) and then calculate a few points in between.

> If G(j0O) is a finite and non-zero, then the Nyquist diagram will always start off by
leaving the real axis at right angles to it. This is due to (Taylor series expansion):

G(je) = G(j0) + jeG’ (j0) — e2G" (j0) — ... ~ G(j0) + jeG' (50)

> If G(j0) is infinite, due to the presence of integrators, then we must explicitly find the
first two terms of the Taylor series expansion of G(jw) about w = 0, as in the example
with a time delay, a lag and an integrator.
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Feedback Stability

Definition (Asymptotic stability of a feedback system)

We say that the closed-loop system is asymptotically stable if the closed-loop transfer
function L(s)/(1 + L(s)) is asymptotically stable.

Lis) = roots of 1 + L(s) =0

Closed-loop poles = poles of 1+(L()s) =

> This corresponds to all the roots of 1 4+ C(s)P(s) = 0 lying in the LHP.

Im Im (L(jw))

Re , Re (L(jw))
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Feedback Stability

Definition (Asymptotic stability of a feedback system)

We say that the closed-loop system is asymptotically stable if the closed-loop transfer
function L(s)/(1 + L(s)) is asymptotically stable.

L(s)

TFL(s) = roots of 1+ L(s)=0

Closed-loop poles = poles of

> This corresponds to all the roots of 1 4+ C(s)P(s) = 0 lying in the LHP.

Im Im (L(‘]u)))
L(s) = -1

Re Re (L(jw))
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Feedback Stability

Definition (Asymptotic stability of a feedback system)

We say that the closed-loop system is asymptotically stable if the closed-loop transfer
function L(s)/(1 + L(s)) is asymptotically stable.
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_L(s)
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Nyquist’s Stability Theorem

If a feedback system has a stable return ratio L(s), then the feedback system is stable

Simplified Nyquist's Stability Theorem
if and only if the closed contour given by Q = {L(jw) : —0co < w < oo} C C has
no net encirclements of the point “—1".
> If L(s) is stable (either marginally or asymptotically), then
Im (L(jw)) I (L)) I“‘(L(ff)_)--_‘\
Ve \\ // \\\ // \\\
\ I \ / \
N ) \ 1 \
\ A \ A \
Lre(re) e (1) e (1)
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Nyquist’s Stability Theorem

Simplified Nyquist's Stability Theorem

If a feedback system has a stable return ratio L(s), then the feedback system is stable
if and only if the closed contour given by Q = {L(jw) : —0co < w < oo} C C has
no net encirclements of the point “—1".

> If L(s) is stable (either marginally or asymptotically), then

i (L) I (£G9) Im(L(iw_*)_)___\
P - \‘\\\ /” \\\ // \\\
// AN // \\ // \\\
I N 1 \ 1 \
! \ A \ A \
& VRe (L) N\ {Re (L(jw))  \ 1Re (L(jw))

-1

L(s) L(s) L(s)
1+ L(s) 1T L(s) 1T L(s)
asymptotically marginally unstable
stable stable
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But what is the intuition behind it?
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But what is the intuition behind it?

> Negative feedback is used to reduce the size of the error e(t). If y(t) is greater
than r(t), then e(t) is negative.

7(s)

+ e(s 7(s)
T (s) L(S) Y

Aalto University

ELEC-C8201 - Control and automation
13/21




But what is the intuition behind it?

> Negative feedback is used to reduce the size of the error e(t). If y(t) is greater

than r(t), then e(t)

7

is negative.

(s) +@ e(s)

L(s)

7(s)

> The phase lag from the input to the output (—ZL(jw)) tends to increase with
frequency, reaching 180°. When this happens, the negative feedback is turned into

positive feedback!
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But what is the intuition behind it?

> Negative feedback is used to reduce the size of the error e(t). If y(t) is greater
than r(t), then e(t) is negative.

7‘(8) +@ 5(5) L(S) y(é)

> The phase lag from the input to the output (—ZL(jw)) tends to increase with
frequency, reaching 180°. When this happens, the negative feedback is turned into
positive feedback!

> If the gain |L(jw)| has not decreased to less than 1 by this frequency then
instability of the closed-loop system will result.
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Example:

1
Let P(s) =

m and C(S) = k, k> 0. Therefore, L(S) is given by
k

L ==
(s) s3+s2+25+1
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k

=0 = $+4+s242s+14+k=0
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Example:

1
Let P(s) =

Fro il and C(s) =k, k > 0. Therefore, L(s) is given by
k

L(s)= ——~

(s) s3+s2+2s+1
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k

3, .2
I = 2 1+k=0
s34+s2 42541 sThsTAEs LS

1+

The open-loop frequency response L(jw) is given by
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1
Let P(s) =

Fro il and C(s) =k, k > 0. Therefore, L(s) is given by
k

L =V
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k

3, .2
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The open-loop frequency response L(jw) is given by
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When the Nyquist diagram crosses the real axis, L(jw.) is purely real. In this case, it
is real for we = V2, i.e.,
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) Closed-loop step response
Im (L(jw))

Amplitude

Closed-loop poles

> Closed-loop system is asymptotically stable.
Im
> Then, the oscillations decay.
—0.0349 + 51.3906 N
> Closed-loop poles are the roots of
3 2 —0 i
s°+s“+2s+1.8=0, i.e., ~0.9302 + O Re
N

s = {-0.9302, —0.0349 + j1.3906}

—0.0349 — 51.3906 X
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Im (L(jw)) Closed-loop step response

Re (L(]w)) g
=
E‘
<
t
Closed-loop poles
» Closed-loop system is marginally stable. Im
> The feedback system oscillates at the 0+j1.4142
corresponding frequency.
» Closed-loop poles are the roots of —1440 Re
3 +524254+2=0, e, 7~
={-1,£5jVvV2
s={-1,+v2} 0— j1.4142
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T (L(jw))

Re (L(.’iw))

> Closed-loop system is unstable.
> The oscillations grow.

> Closed-loop poles are the roots of
s3+524+25+22=0, e,

Amplitude

s = {—1.0639,0.0319 £ 51.4377}

Closed-loop step response

Closed-loop poles

Im

0.0319 + j1.4377 K

—1.0639 + 50 Re
N

N

0.0319 — j1.4377 K

A
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Stability Margins

L(jw) coming close to the —1 point without encircling it is undesirable for two
reasons:

1. It implies that a closed-loop pole will be close to the imaginary axis and that the
closed-loop system will be oscillatory, e.g.,
Im (L(jw))

Im

—0.0349 + j1.3906

0.9302 + jO

Amplitude

—0.0349 — j1.3906

2. If our plant P(s) is the transfer function of an inaccurate model, then the “true”
Nyquist diagram might actually encircle —1.

The gain margin and the phase margin are measures of how close the return ratio
L(jw) gets to —1.
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The gain margin (GM) is a measure of how much the gain of L(s) can be increased
before the closed-loop system becomes unstable.
1 1
GM=—=———
@ [L(jwpe)l
The phase margin (PM) is a measure of how much phase lag can be added to L(s)
before the closed-loop system becomes unstable.

PM =0 =n+ ZL(jwge)
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Example:
e*STl
Let L(s) = ——, with 74 = 0.5 and 72 = 0.1.
s(1+ s72)

Im (L(jw))

1
=—=—— =2.7164
e 0.3681

N Re (L(jw))

> Nyquist stability theorem and stability margins applied
to a system defined by a non-rational function (delay
parameter).

R > Phase margin can be extracted analytically (as an

exercise).

> Gain margin can be approximated (lower bounded)
analytically (as an exercise).
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Example:
e*STl
Let L(s) = ——, with 74 = 0.5 and 72 = 0.1.
s(1+ s72)

Im (L(jw))

1
= — = —— =2.7164
« 0.3681

N Re (L(jw))

> Nyquist stability theorem and stability margins applied
to a system defined by a non-rational function (delay
parameter).

R > Phase margin can be extracted analytically (as an
exercise).

> Gain margin can be approximated (lower bounded)
analytically (as an exercise).

How much extra delay can be added to the system before it becomes unstable?
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Learning outcomes...

...the student will:

> Learn how to plot the open-loop frequency response of the return ratio L(s), with
the imaginary part Im (L(jw)) plotted against the real part Re (L(jw)) on an
Argand diagram.

> Use the Nyquist diagram to ascertain stability of the closed-loop system.

> Infer more detailed information about the behavior of the closed-loop system:

(a) No need to explicitly compute the poles of the system, so it can be applied to systems
defined by non-rational functions.

(b) Relatively easy to see how changing C(s) affects L(s), but difficult to see how C(s)
affects L(s)/(1 4+ L(s)) directly.

(c) Gain and phase margins measure how close the closed-loop system is to instability.
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