The Nyquist Stability Criterion

Elham Abolfazli
Office: room 1305a, Otakaari 5
Email: elham.abolfazli@aalto.fi

In the previous lecture...

You:

- Understood the powerful concept of frequency response and its role in control system design.
- Knew how to sketch a Bode plot and also how to obtain a computer-generated Bode plot.
- Became familiar with log magnitude and phase diagrams.

Learning outcomes...

...the student will:

- Learn how to plot the open-loop frequency response of the return ratio $L(s)$
- Use the Nyquist diagram to ascertain stability of the closed-loop system
- Infer more detailed information about the behavior of the closed-loop system

The Return Ratio

- The Return Ratio of a loop is defined as -1 times the product of all the terms around the loop. In this case,

$$
L(s)=(-1) \times(-H(s)) K(s) G(s)=H(s) K(s) G(s)
$$

- Feedback control systems are often tested in this configuration as a final check before closing the loop. Note that

$$
\begin{aligned}
& \bar{e}(s)=\frac{1}{1+L(s)} \bar{r}(s) \\
& \bar{y}(s)=\frac{K(s) G(s)}{1+L(s)} \bar{r}(s)
\end{aligned}
$$

The Nyquist diagram

Example: Consider the integrator

$$
G(s)=1 / s
$$

Then,

$$
G(j \omega)=\frac{1}{j \omega}=\frac{-j}{\omega} \Rightarrow\left\{\begin{array}{l}
|G(j \omega)|=1 / \omega \\
\angle G(j \omega)=-90^{\circ}
\end{array}\right.
$$

Recall the bode plot:

The Nyquist plot is therefore:

Example: Consider the system with first-order lag

$$
G(s)=\frac{1}{1+s T}
$$

Then,

$$
G(j \omega)=\frac{1}{1+j \omega T} \Rightarrow\left\{\begin{array}{l}
|G(j \omega)|=\frac{1}{\sqrt{1+\omega^{2} T^{2}}} \\
\angle G(j \omega)=-\arctan (\omega T)
\end{array}\right.
$$

Recall the bode plot $(T=1)$:

The Nyquist plot is therefore:

Example: Consider the system with second-order lag

$$
G(s)=\frac{1}{\left(1+s T_{1}\right)\left(1+s T_{2}\right)}
$$

Then,

$$
G(j \omega)=\frac{1}{\left(1+j \omega T_{1}\right)\left(1+j \omega T_{2}\right)} \Rightarrow\left\{\begin{array}{l}
|G(j \omega)|=\frac{1}{\sqrt{1+\omega^{2} T_{1}^{2}} \sqrt{1+\omega^{2} T_{2}^{2}}} \\
\angle G(j \omega)=-\arctan \left(\omega T_{1}\right)-\arctan \left(\omega T_{2}\right)
\end{array}\right.
$$

Recall the bode plot ($T_{1}=1, T_{2}=10$):

The Nyquist plot is therefore:

Example: Consider the system with time delay, lag and integrator

$$
G(s)=\frac{e^{-s T_{1}}}{s\left(1+s T_{2}\right)}
$$

Then,

$$
G(j \omega)=\frac{e^{-j \omega T_{1}}}{j \omega\left(1+j \omega T_{2}\right)} \Rightarrow\left\{\begin{array}{l}
|G(j \omega)|=\underbrace{\left|e^{-j \omega T_{1}}\right|}_{=1} \times \frac{1}{|j \omega|} \times \frac{1}{\left|1+j \omega T_{2}\right|} \\
\angle G(j \omega)=\underbrace{\angle e^{-j \omega T_{1}}}_{-\omega T_{1}}-\underbrace{\angle(j \omega)}_{90^{\circ}}-\angle\left(1+j \omega T_{2}\right)
\end{array}\right.
$$

- Clearly, as $\omega \rightarrow 0$, the $|G(j \omega)| \rightarrow \infty$. But this is not enough information to sketch the Nyquist diagram.
- How does $|G(j \omega)| \rightarrow \infty$?
- To answer this, we use Taylor series expansion around $\omega=0$

$$
\begin{aligned}
e^{-j \omega T_{1}} & =\sum_{n=0}^{\infty} \frac{\left(-j \omega T_{1}\right)^{n}}{n!}=1+\frac{\left(-j \omega T_{1}\right)}{1!}+\frac{\left(-j \omega T_{1}\right)^{2}}{2!}+\ldots \approx 1-j \omega T_{1} \\
\frac{1}{1+j \omega T_{2}} & =1+\left(-j \omega T_{2}\right)+\left(-j \omega T_{2}\right)^{2}+\left(-j \omega T_{2}\right)^{3}+\ldots \approx 1-j \omega T_{2}
\end{aligned}
$$

- How does $|G(j \omega)| \rightarrow \infty$? (continued...)
- Therefore,

$$
G(j \omega) \rightarrow \frac{\left(1-j \omega T_{1}\right)\left(1-j \omega T_{2}\right)}{j \omega}=\frac{1}{j \omega}-\left(T_{1}+T_{2}\right)+\underset{T_{1} T_{2}}{ } 0
$$

The bode plot $\left(T_{1}=1, T_{2}=10\right)$:

The Nyquist plot is therefore:

Sketching Nyquist diagrams

- Unlike the Bode diagram, there are no detailed rules for sketching Nyquist diagrams
- Suffices to determine the asymptotic behavior as $\omega \rightarrow 0$ and $\omega \rightarrow \infty$ (using the techniques we have seen in the examples) and then calculate a few points in between.
- If $G(j 0)$ is a finite and non-zero, then the Nyquist diagram will always start off by leaving the real axis at right angles to it. This is due to (Taylor series expansion):

$$
G(j \varepsilon)=G(j 0)+j \varepsilon G^{\prime}(j 0)-\varepsilon^{2} G^{\prime \prime}(j 0)-\ldots \approx G(j 0)+j \varepsilon G^{\prime}(j 0)
$$

- If $G(j 0)$ is infinite, due to the presence of integrators, then we must explicitly find the first two terms of the Taylor series expansion of $G(j \omega)$ about $\omega=0$, as in the example with a time delay, a lag and an integrator.

Feedback Stability

Definition (Asymptotic stability of a feedback system)

We say that the closed-loop system is asymptotically stable if the closed-loop transfer function $L(s) /(1+L(s))$ is asymptotically stable.

Closed-loop poles \equiv poles of $\frac{L(s)}{1+L(s)} \equiv$ roots of $1+L(s)=0$

- This corresponds to all the roots of $1+C(s) P(s)=0$ lying in the LHP.

Feedback Stability

Definition (Asymptotic stability of a feedback system)

We say that the closed-loop system is asymptotically stable if the closed-loop transfer function $L(s) /(1+L(s))$ is asymptotically stable.

Closed-loop poles \equiv poles of $\frac{L(s)}{1+L(s)} \equiv$ roots of $1+L(s)=0$

- This corresponds to all the roots of $1+C(s) P(s)=0$ lying in the LHP.

Feedback Stability

Definition (Asymptotic stability of a feedback system)

We say that the closed-loop system is asymptotically stable if the closed-loop transfer function $L(s) /(1+L(s))$ is asymptotically stable.

Closed-loop poles \equiv poles of $\frac{L(s)}{1+L(s)} \equiv$ roots of $1+L(s)=0$

- This corresponds to all the roots of $1+C(s) P(s)=0$ lying in the LHP.

Feedback Stability

Definition (Asymptotic stability of a feedback system)

We say that the closed-loop system is asymptotically stable if the closed-loop transfer function $L(s) /(1+L(s))$ is asymptotically stable.

Closed-loop poles \equiv poles of $\frac{L(s)}{1+L(s)} \equiv$ roots of $1+L(s)=0$

- This corresponds to all the roots of $1+C(s) P(s)=0$ lying in the LHP.

Feedback Stability

Definition (Asymptotic stability of a feedback system)

We say that the closed-loop system is asymptotically stable if the closed-loop transfer function $L(s) /(1+L(s))$ is asymptotically stable.

Closed-loop poles \equiv poles of $\frac{L(s)}{1+L(s)} \equiv$ roots of $1+L(s)=0$

- This corresponds to all the roots of $1+C(s) P(s)=0$ lying in the LHP.

Feedback Stability

Definition (Asymptotic stability of a feedback system)

We say that the closed-loop system is asymptotically stable if the closed-loop transfer function $L(s) /(1+L(s))$ is asymptotically stable.

Closed-loop poles \equiv poles of $\frac{L(s)}{1+L(s)} \equiv$ roots of $1+L(s)=0$

- This corresponds to all the roots of $1+C(s) P(s)=0$ lying in the LHP.

Nyquist's Stability Theorem

Simplified Nyquist's Stability Theorem

If a feedback system has a stable return ratio $L(s)$, then the feedback system is stable if and only if the closed contour given by $\Omega=\{L(j \omega):-\infty<\omega<\infty\} \subset \mathbb{C}$ has no net encirclements of the point " -1 ".

- If $L(s)$ is stable (either marginally or asymptotically), then

Nyquist's Stability Theorem

Simplified Nyquist's Stability Theorem

If a feedback system has a stable return ratio $L(s)$, then the feedback system is stable if and only if the closed contour given by $\Omega=\{L(j \omega):-\infty<\omega<\infty\} \subset \mathbb{C}$ has no net encirclements of the point " -1 ".

- If $L(s)$ is stable (either marginally or asymptotically), then

$$
\Rightarrow \frac{L(s)}{1+L(s)}
$$

asymptotically stable

$\Rightarrow \frac{L(s)}{1+L(s)}$
marginally stable

But what is the intuition behind it?

But what is the intuition behind it?

- Negative feedback is used to reduce the size of the error $e(t)$. If $y(t)$ is greater than $r(t)$, then $e(t)$ is negative.

But what is the intuition behind it?

- Negative feedback is used to reduce the size of the error $e(t)$. If $y(t)$ is greater than $r(t)$, then $e(t)$ is negative.

- The phase lag from the input to the output $(-\angle L(j \omega))$ tends to increase with frequency, reaching 180°. When this happens, the negative feedback is turned into positive feedback!

But what is the intuition behind it?

- Negative feedback is used to reduce the size of the error $e(t)$. If $y(t)$ is greater than $r(t)$, then $e(t)$ is negative.

- The phase lag from the input to the output $(-\angle L(j \omega))$ tends to increase with frequency, reaching 180°. When this happens, the negative feedback is turned into positive feedback!
- If the gain $|L(j \omega)|$ has not decreased to less than 1 by this frequency then instability of the closed-loop system will result.

Example:

Let $P(s)=\frac{1}{s^{3}+s^{2}+2 s+1}$ and $C(s)=k, k>0$. Therefore, $L(s)$ is given by

$$
L(s)=\frac{k}{s^{3}+s^{2}+2 s+1}
$$

Example:

Let $P(s)=\frac{1}{s^{3}+s^{2}+2 s+1}$ and $C(s)=k, k>0$. Therefore, $L(s)$ is given by

$$
L(s)=\frac{k}{s^{3}+s^{2}+2 s+1}
$$

The closed-loop poles are the roots of

Example:

Let $P(s)=\frac{1}{s^{3}+s^{2}+2 s+1}$ and $C(s)=k, k>0$. Therefore, $L(s)$ is given by

$$
L(s)=\frac{k}{s^{3}+s^{2}+2 s+1}
$$

The closed-loop poles are the roots of

$$
1+\frac{k}{s^{3}+s^{2}+2 s+1}=0 \quad \Rightarrow \quad s^{3}+s^{2}+2 s+1+k=0
$$

Example:

Let $P(s)=\frac{1}{s^{3}+s^{2}+2 s+1}$ and $C(s)=k, k>0$. Therefore, $L(s)$ is given by

$$
L(s)=\frac{k}{s^{3}+s^{2}+2 s+1}
$$

The closed-loop poles are the roots of

$$
1+\frac{k}{s^{3}+s^{2}+2 s+1}=0 \quad \Rightarrow \quad s^{3}+s^{2}+2 s+1+k=0
$$

The open-loop frequency response $L(j \omega)$ is given by

Example:

Let $P(s)=\frac{1}{s^{3}+s^{2}+2 s+1}$ and $C(s)=k, k>0$. Therefore, $L(s)$ is given by

$$
L(s)=\frac{k}{s^{3}+s^{2}+2 s+1}
$$

The closed-loop poles are the roots of

$$
1+\frac{k}{s^{3}+s^{2}+2 s+1}=0 \quad \Rightarrow \quad s^{3}+s^{2}+2 s+1+k=0
$$

The open-loop frequency response $L(j \omega)$ is given by

$$
L(j \omega)=\frac{k}{j\left(-\omega^{3}+2 \omega\right)+\left(-\omega^{2}+1\right)}
$$

Example:

Let $P(s)=\frac{1}{s^{3}+s^{2}+2 s+1}$ and $C(s)=k, k>0$. Therefore, $L(s)$ is given by

$$
L(s)=\frac{k}{s^{3}+s^{2}+2 s+1}
$$

The closed-loop poles are the roots of

$$
1+\frac{k}{s^{3}+s^{2}+2 s+1}=0 \quad \Rightarrow \quad s^{3}+s^{2}+2 s+1+k=0
$$

The open-loop frequency response $L(j \omega)$ is given by

$$
L(j \omega)=\frac{k}{j\left(-\omega^{3}+2 \omega\right)+\left(-\omega^{2}+1\right)}
$$

When the Nyquist diagram crosses the real axis, $L\left(j \omega_{c}\right)$ is purely real. In this case, it is real for $\omega_{c}=\sqrt{2}$, i.e.,

Example:

Let $P(s)=\frac{1}{s^{3}+s^{2}+2 s+1}$ and $C(s)=k, k>0$. Therefore, $L(s)$ is given by

$$
L(s)=\frac{k}{s^{3}+s^{2}+2 s+1}
$$

The closed-loop poles are the roots of

$$
1+\frac{k}{s^{3}+s^{2}+2 s+1}=0 \quad \Rightarrow \quad s^{3}+s^{2}+2 s+1+k=0
$$

The open-loop frequency response $L(j \omega)$ is given by

$$
L(j \omega)=\frac{k}{j\left(-\omega^{3}+2 \omega\right)+\left(-\omega^{2}+1\right)}
$$

When the Nyquist diagram crosses the real axis, $L\left(j \omega_{c}\right)$ is purely real. In this case, it is real for $\omega_{c}=\sqrt{2}$, i.e.,

$$
L(j \sqrt{2})=\frac{k}{j\left(-(\sqrt{2})^{3}+2 \sqrt{2}\right)+\left(-(\sqrt{2})^{2}+1\right)}=-k
$$

$k=0.8:$

Closed-loop step response

Closed-loop poles

- Closed-loop system is asymptotically stable.
- Then, the oscillations decay.
- Closed-loop poles are the roots of $s^{3}+s^{2}+2 s+1.8=0$, i.e.,

$$
s=\{-0.9302,-0.0349 \pm j 1.3906\}
$$

$k=1:$

Closed-loop step response

Closed-loop poles

- Closed-loop system is marginally stable.
- The feedback system oscillates at the corresponding frequency.
- Closed-loop poles are the roots of $s^{3}+s^{2}+2 s+2=0$, i.e.,

$$
s=\{-1, \pm j \sqrt{2}\}
$$

$k=1.2:$

Closed-loop step response

Closed-loop poles

- Closed-loop system is unstable.
- The oscillations grow.
- Closed-loop poles are the roots of $s^{3}+s^{2}+2 s+2.2=0$, i.e.,

$$
s=\{-1.0639,0.0319 \pm j 1.4377\}
$$

Stability Margins

$L(j \omega)$ coming close to the -1 point without encircling it is undesirable for two reasons:

1. It implies that a closed-loop pole will be close to the imaginary axis and that the closed-loop system will be oscillatory, e.g.,

2. If our plant $P(s)$ is the transfer function of an inaccurate model, then the "true" Nyquist diagram might actually encircle -1 .

The gain margin and the phase margin are measures of how close the return ratio $L(j \omega)$ gets to -1 .

The gain margin (GM) is a measure of how much the gain of $L(s)$ can be increased before the closed-loop system becomes unstable.

$$
G M=\frac{1}{\alpha}=\frac{1}{\left|L\left(j \omega_{p c}\right)\right|}
$$

The phase margin (PM) is a measure of how much phase lag can be added to $L(s)$ before the closed-loop system becomes unstable.

$$
P M=\theta=\pi+\angle L\left(j \omega_{g c}\right)
$$

Example:

Let $L(s)=\frac{e^{-s \tau_{1}}}{s\left(1+s \tau_{2}\right)}$, with $\tau_{1}=0.5$ and $\tau_{2}=0.1$.

$$
\begin{aligned}
& G M=\frac{1}{\alpha}=\frac{1}{0.3681}=2.7164 \\
& P M=\theta=55.8^{\circ}
\end{aligned}
$$

- Nyquist stability theorem and stability margins applied to a system defined by a non-rational function (delay parameter).
- Phase margin can be extracted analytically (as an exercise).
- Gain margin can be approximated (lower bounded) analytically (as an exercise).

Example:

Let $L(s)=\frac{e^{-s \tau_{1}}}{s\left(1+s \tau_{2}\right)}$, with $\tau_{1}=0.5$ and $\tau_{2}=0.1$.

$$
\begin{aligned}
& G M=\frac{1}{\alpha}=\frac{1}{0.3681}=2.7164 \\
& P M=\theta=55.8^{\circ}
\end{aligned}
$$

How much extra delay can be added to the system before it becomes unstable?

Learning outcomes...

...the student will:

- Learn how to plot the open-loop frequency response of the return ratio $L(s)$, with the imaginary part $\operatorname{Im}(L(j \omega))$ plotted against the real part $\operatorname{Re}(L(j \omega))$ on an Argand diagram.
- Use the Nyquist diagram to ascertain stability of the closed-loop system.
- Infer more detailed information about the behavior of the closed-loop system:
(a) No need to explicitly compute the poles of the system, so it can be applied to systems defined by non-rational functions.
(b) Relatively easy to see how changing $C(s)$ affects $L(s)$, but difficult to see how $C(s)$ affects $L(s) /(1+L(s))$ directly.
(c) Gain and phase margins measure how close the closed-loop system is to instability.

