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In the previous lecture...

You:

I Understood the powerful concept of frequency response and its role in control
system design.

I Knew how to sketch a Bode plot and also how to obtain a computer-generated
Bode plot.

I Became familiar with log magnitude and phase diagrams.
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Learning outcomes...
...the student will:

I Learn how to plot the open-loop frequency response of the return ratio L(s)

I Use the Nyquist diagram to ascertain stability of the closed-loop system

I Infer more detailed information about the behavior of the closed-loop system
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The Return Ratio

Part IB Paper 6: Information Engineering

LINEAR SYSTEMS AND CONTROL

Glenn Vinnicombe

HANDOUT 5

“An Introduction to Feedback Control Systems”
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Σ
+r̄ (s) ē(s) ȳ(s)
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−

z̄(s) = H(s)G(s)K(s)︸ ︷︷ ︸
L(s)

Return ratio

ē(s)

ē(s) =
1

1+ L(s)︸ ︷︷ ︸
Closed-loop transfer function

relating ē(s) and r̄ (s)

r̄ (s)

ȳ(s) = G(s)K(s)ē(s) =
G(s)K(s)

1+ L(s)︸ ︷︷ ︸
Closed-loop transfer function

relating ȳ(s) and r̄ (s)

r̄ (s)

1

I The Return Ratio of a loop is defined as −1 times the product of all the terms
around the loop. In this case,

L(s) = (−1)× (−H(s))K(s)G(s) = H(s)K(s)G(s)

I Feedback control systems are often tested in this configuration as a final check
before closing the loop. Note that

ē(s) =
1

1 + L(s)
r̄(s)

ȳ(s) =
K(s)G(s)
1 + L(s)

r̄(s)
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The Nyquist diagram

I A plot of the frequency response of the return ratio, with the imaginary part
Im
(
L(jω)

)
plotted against the real part Re

(
L(jω)

)
on an Argand diagram (that

is, like the Bode diagram, it is a plot of an open-loop frequency response).

6.1 The Nyquist Diagram

The Nyquist diagram of a system G(s) is a plot of the frequency

response G(jω) on an Argand diagram.

That is: it is a plot of ℑ(G(jω)) vs ℜ(G(jω)).
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Example: Consider the integrator

G(s) = 1/s

Then,

G(jω) =
1
jω

=
−j
ω
⇒

{
|G(jω)| = 1/ω

∠G(jω) = −90o

Recall the bode plot:
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Example: Consider the system with first-order lag

G(s) =
1

1 + sT

Then,

G(jω) =
1

1 + jωT
⇒

{
|G(jω)| = 1√

1+ω2T2

∠G(jω) = − arctan(ωT )

Recall the bode plot (T = 1):
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Example: Consider the system with second-order lag

G(s) =
1

(1 + sT1)(1 + sT2)

Then,

G(jω) =
1

(1 + jωT1)(1 + jωT2)
⇒

|G(jω)| = 1√
1+ω2T2

1

√
1+ω2T2

2

∠G(jω) = − arctan(ωT1)− arctan(ωT2)

Recall the bode plot (T1 = 1, T2 = 10):
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The Nyquist plot is therefore:
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Example: Consider the system with time delay, lag and integrator

G(s) =
e−sT1

s(1 + sT2)
Then,

G(jω) =
e−jωT1

jω(1 + jωT2)
⇒


|G(jω)| = |e−jωT1 |︸ ︷︷ ︸

=1

× 1
|jω| ×

1
|1+jωT2|

∠G(jω) = ∠e−jωT1︸ ︷︷ ︸
−ωT1

−∠(jω)︸ ︷︷ ︸
90o

−∠(1 + jωT2)

I Clearly, as ω → 0, the |G(jω)| → ∞. But this is not enough information to sketch
the Nyquist diagram.

I How does |G(jω)| → ∞?
I To answer this, we use Taylor series expansion around ω = 0

e
−jωT1 =

∞∑
n=0

(−jωT1)n

n!
= 1 +

(−jωT1)
1!

+
(−jωT1)2

2!
+ . . . ≈ 1− jωT1

1
1 + jωT2

= 1 + (−jωT2) + (−jωT2)2 + (−jωT2)3 + . . . ≈ 1− jωT2
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I How does |G(jω)| → ∞? (continued...)
I Therefore,

G(jω)→
(1− jωT1)(1− jωT2)

jω
=

1
jω
− (T1 + T2) +���

�: 0
jωT1T2

The bode plot (T1 = 1, T2 = 10):

Bode Diagram

Frequency  (rad/s)

-80

-60

-40

-20

0

20

40

M
ag

ni
tu

de
 (d

B)

0.01 0.1 1 10
-810
-720
-630
-540
-450
-360
-270
-180
-90

Ph
as

e 
(d

eg
)

The Nyquist plot is therefore:

Re
(
G(jω)

)

Im
(
G(jω)

)

−(T1 + T2)

2



ELEC-C8201 - Control and automation
10/21

Sketching Nyquist diagrams

I Unlike the Bode diagram, there are no detailed rules for sketching Nyquist
diagrams
I Suffices to determine the asymptotic behavior as ω → 0 and ω →∞ (using the

techniques we have seen in the examples) and then calculate a few points in between.

I If G(j0) is a finite and non-zero, then the Nyquist diagram will always start off by
leaving the real axis at right angles to it. This is due to (Taylor series expansion):

G(jε) = G(j0) + jεG
′(j0)− ε2

G
′′(j0)− . . . ≈ G(j0) + jεG

′(j0)

I If G(j0) is infinite, due to the presence of integrators, then we must explicitly find the
first two terms of the Taylor series expansion of G(jω) about ω = 0, as in the example
with a time delay, a lag and an integrator.
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Feedback Stability
Definition (Asymptotic stability of a feedback system)

We say that the closed-loop system is asymptotically stable if the closed-loop transfer
function L(s)/(1 + L(s)) is asymptotically stable.

Closed-loop poles ≡ poles of L(s)
1+L(s) ≡ roots of 1 + L(s) = 0

I This corresponds to all the roots of 1 + C(s)P (s) = 0 lying in the LHP.

Re

Im

1

Re

Im

s
×

1

Re
(
L(jω)

)

Im
(
L(jω)

)

+
−1

1

Re
(
L(jω)

)

Im
(
L(jω)

)

+
−1

1
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Nyquist’s Stability Theorem

Simplified Nyquist’s Stability Theorem

If a feedback system has a stable return ratio L(s), then the feedback system is stable
if and only if the closed contour given by Ω = {L(jω) : −∞ < ω < ∞} ⊂ C has
no net encirclements of the point “−1”.

I If L(s) is stable (either marginally or asymptotically), then
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But what is the intuition behind it?

I Negative feedback is used to reduce the size of the error e(t). If y(t) is greater
than r(t), then e(t) is negative.

r(s) y(s)
L(s)Σ

+

−

e(s)

I The phase lag from the input to the output (−∠L(jω)) tends to increase with
frequency, reaching 180◦. When this happens, the negative feedback is turned into
positive feedback!

I If the gain |L(jω)| has not decreased to less than 1 by this frequency then
instability of the closed-loop system will result.
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Example:
Let P (s) =

1
s3 + s2 + 2s+ 1

and C(s) = k, k > 0. Therefore, L(s) is given by

L(s) =
k

s3 + s2 + 2s+ 1

The closed-loop poles are the roots of

1 +
k

s3 + s2 + 2s+ 1
= 0 ⇒ s3 + s2 + 2s+ 1 + k = 0

The open-loop frequency response L(jω) is given by

L(jω) =
k

j(−ω3 + 2ω) + (−ω2 + 1)

When the Nyquist diagram crosses the real axis, L(jωc) is purely real. In this case, it
is real for ωc =

√
2, i.e.,

L(j
√

2) =
k

j(−(
√

2)3 + 2
√

2) + (−(
√

2)2 + 1)
= −k
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When the Nyquist diagram crosses the real axis, L(jωc) is purely real. In this case, it
is real for ωc =

√
2, i.e.,

L(j
√

2) =
k

j(−(
√

2)3 + 2
√

2) + (−(
√

2)2 + 1)
= −k
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k = 0.8:

+
−k Re

(
L(jω)

)

Im
(
L(jω)

)

+
−1

1

Closed-loop step response

t

A
m

p
li
tu

d
e

2

I Closed-loop system is asymptotically stable.

I Then, the oscillations decay.

I Closed-loop poles are the roots of
s3 + s2 + 2s+ 1.8 = 0, i.e.,

s = {−0.9302,−0.0349± j1.3906}

+
−k Re

(
L(jω)

)

Im
(
L(jω)

)

+
−1

1

Closed-loop step response

t

A
m

p
li
tu

d
e

2

Re

Im

Closed-loop poles

×
−0.9302 + j0

×−0.0349 + j1.3906

×−0.0349 − j1.3906

1
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k = 1:

Re
(
L(jω)

)

Im
(
L(jω)

)

+
−1

1

Closed-loop step response

t

A
m

p
li
tu

d
e

2

Re

Im

Closed-loop poles

×
−1 + j0

×0 + j1.4142

×0 − j1.4142

1

I Closed-loop system is marginally stable.

I The feedback system oscillates at the
corresponding frequency.

I Closed-loop poles are the roots of
s3 + s2 + 2s+ 2 = 0, i.e.,

s = {−1,±j
√

2}

Re
(
L(jω)

)

Im
(
L(jω)

)

+
−1

1

Closed-loop step response

t

A
m

p
li
tu

d
e

2

Re

Im

Closed-loop poles

×
−1 + j0

×0 + j1.4142

×0 − j1.4142

1
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k = 1.2:

Re
(
L(jω)

)

Im
(
L(jω)

)

+
−1

1

Re

Im

Closed-loop poles

×
−1.0639 + j0

×0.0319 + j1.4377

×0.0319 − j1.4377

1

Closed-loop step response

t

A
m

p
li
tu

d
e

1

I Closed-loop system is unstable.

I The oscillations grow.

I Closed-loop poles are the roots of
s3 + s2 + 2s+ 2.2 = 0, i.e.,

s = {−1.0639, 0.0319± j1.4377}

Re
(
L(jω)

)

Im
(
L(jω)

)

+
−1

1

Re

Im

Closed-loop poles

×
−1.0639 + j0

×0.0319 + j1.4377

×0.0319 − j1.4377

1

Closed-loop step response

t

A
m

p
li
tu

d
e

1
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Stability Margins

L(jω) coming close to the −1 point without encircling it is undesirable for two
reasons:

1. It implies that a closed-loop pole will be close to the imaginary axis and that the
closed-loop system will be oscillatory, e.g.,

Closed-loop step response

t
A

m
p
li
tu

d
e

2

Re

Im

Closed-loop poles

×
−0.9302 + j0

×−0.0349 + j1.3906

×−0.0349 − j1.3906

1

Re
(
L(jω)

)

Im
(
L(jω)

)

+
−1

1

2. If our plant P (s) is the transfer function of an inaccurate model, then the “true”
Nyquist diagram might actually encircle −1.

The gain margin and the phase margin are measures of how close the return ratio
L(jω) gets to −1.
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Re
(
L(jω)

)

Im
(
L(jω)

)

ω = ωgc

ω = ωpc

L(jω)

θ

−1 −α

1

The gain margin (GM) is a measure of how much the gain of L(s) can be increased
before the closed-loop system becomes unstable.

GM =
1
α

=
1

|L(jωpc)|

The phase margin (PM) is a measure of how much phase lag can be added to L(s)
before the closed-loop system becomes unstable.

PM = θ = π + ∠L(jωgc)
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Example:

Let L(s) =
e−sτ1

s(1 + sτ2)
, with τ1 = 0.5 and τ2 = 0.1.

Re
(
L(jω)

)

Im
(
L(jω)

)

θ

−(τ1 + τ2) = −0.6

+−1 −α

2

GM =
1
α

=
1

0.3681
= 2.7164

PM = θ = 55.8◦

I Nyquist stability theorem and stability margins applied
to a system defined by a non-rational function (delay
parameter).

I Phase margin can be extracted analytically (as an
exercise).

I Gain margin can be approximated (lower bounded)
analytically (as an exercise).

How much extra delay can be added to the system before it becomes unstable?
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Learning outcomes...

...the student will:

I Learn how to plot the open-loop frequency response of the return ratio L(s), with
the imaginary part Im

(
L(jω)

)
plotted against the real part Re

(
L(jω)

)
on an

Argand diagram.

I Use the Nyquist diagram to ascertain stability of the closed-loop system.

I Infer more detailed information about the behavior of the closed-loop system:

(a) No need to explicitly compute the poles of the system, so it can be applied to systems
defined by non-rational functions.

(b) Relatively easy to see how changing C(s) affects L(s), but difficult to see how C(s)
affects L(s)/(1 + L(s)) directly.

(c) Gain and phase margins measure how close the closed-loop system is to instability.


