

Cleanroom and safety

Cleaning

Victor Ovchinnikov

Chapters 35, 12

Previous lectures

- Introduction
- Patterning
- Silicon

- Concept and standards
- Design and air circulation
- Subsystems
- Hazards and alarms

When feature widths were far greater than about 10 µm, purity was not the issue!

MICRONOVA Cleanroom

Cleanroom concept

- A cleanroom is an environment, that has a low level of pollutants under very stable ambient conditions
- The air entering a cleanroom from outside is filtered to exclude dust, and the air inside is constantly recirculated through High-Efficiency Particulate Air (HEPA) and Ultra-Low Penetration Air (ULPA) filters to remove internally generated contaminants
- Most cleanrooms also control humidity, temperature and pressure
- All users of cleanroom use special suits to protect the devices from human contamination

Two cleanliness & safety goals:

- 1) protecting wafers from people and other contamination sources
- 2) protecting people from hazardous chemicals and gases

Protecting people

Potential danger

Protection

-acids and bases

-resists, solvents, pump oils

- -gases
- -ionizing radiation
- -UV-radiation

-fires

safety training
safety goggles
safety gloves
safety apron
working discipline

Protecting wafers

•Unwanted atoms must not move around the lab.

•Because of diffusion, high temperature processes are especially quick to move stuff around.

Solutions:

Processing in dedicated space & equipment. (Outside cleanroom if necessary).

Cleaning before next step.

ISO 14644-1 cleanroom standards (particles)

maximum particles/m³

	≥0.1 µm	≥0.2 µm	≥0.3 µm	≥0.5 µm	≥1 µm	≥5 µm
ISO 1	10	2				
ISO 2	100	24	10	4		
ISO 3	1,000	237	102	35	8	
ISO 4	10,000	2,370	1,020	352	83	
ISO 5	100,000	23,700	10,200	3,520	832	29
ISO 6	1,000,000	237,000	102,000	35,200	8,320	293
ISO 7				352,000	83,200	2,930
ISO 8				3,520,000	832,000	29,300
ISO 9		Room air		35,200,000	8,320,000	293,000

Air extract places

Cleanroom design

Air facilities

Extraction, conditioning, recirculation (500 air changes per hour), filtration

MICRONOVA cleanroom inside

Cleanroom users

Three colours of overall

Oxidation furnace and ALD reactor

- DI-water (UPW) stands for deionized and ultrapure water
- liquid drains
 - acids & bases
 - solvents
 - HF
- vapor exhausts
 - acids & bases
 - solvents
- gas supply:
 - house gases: N₂, O₂, Ar, compressed air
 - specialty gases: SF₆, SiH₄, N₂O, Cl₂
- gas abatement
- gas alarms
- fire alarms

Environment, safety and health (ESH)

- Radiation
 - implanter (X-rays, gamma-rays)
 - plasma tools (microwave energy, UV-radiation)
- High temperature
 - hot plates, furnaces
- Toxic gases
 - implanter, CVD, ALD
- Wet chemical hazards
 - wet etching, wafer cleaning, plating baths
- Fire

- detection, extinguishing

- H₂ explosive
- SiH₄ self-igniting
- AsH₃, PH₃, Cl₂, BCL₃, toxic
- BF3 corrosive

Chemicals

- corrosive chemicals (acids, bases)
- strong corrosive chemicals (HF)
- hot chemicals (80°C baths)
- toxic chemicals (old resist solvents)

Fires

- Lots of hot chemical baths
- Lots of high temperature equipment
- Lots of electrical equipment
- Cannot use powder extinguishers !!
- Even small amount of smoke will cause major damage

Other safety matters

- High voltage (200 kV in ion implanter)
- Solvent vapors
- Wafer cleaving
- Spills and leaks can be anywhere !

In case of alarm...

Micronova exits and meeting points

Do we need cleanroom?

- Expenssive
- Large in size
- Fire and toxicity hazards
- Special overall for operators
- Special staff to support all systems
- Mini-Environments:
 - load wafers and take out ready chips

Summary I

- Microfabrication is impossible without cleanroom environment
- Cleanroom (and its subsystems) provide passive cleanliness
- A cleanroom is expensive in construction and in maintenance

Critical factors of device yield

Critical Factors Affecting Device Yield					
Technology node	HP90	HP65			
Particle diameter (nm)	45	32.5			
Particle count (#/wafer)	75	80			
Critical surface metals (1010 atoms/cm2)	0.5	0.5			
Surface roughness, RMS (Å)	4	4			
Silicon loss (Å)/cleaning step	1	0.5			
Oxide loss (Å)/cleaning step	1	0.5			

Wafer cleaning and surface preparation

- Wafer cleaning
 - removal of added contamination
 - chemically clean
 - particle-free
- Surface preparation
 - known surface condition
 - independence of previous step
 - independence of wait time

Contact angle θ and wettability, 0°< θ<180°

Contamination forms and harmfulness

- -particles -> patterning, growth
- -metals (atomic and ionic contamination) -> Si electronic properties, oxide quality
- organics (molecules and molecular films) -> contact resistance, growth
- -native oxide (nanometer films) –> growth, contact degradation
- -surface roughness -> growth, patterning

Contamination sources

- -reaction (by)products in e.g. etching or CVD
- -flaking of films from chamber walls
- -sputtering of wall materials
- -wafer transport: mechanical handling, chucking/clamping
- -jigs: wafer boats (quartz), polypropylene/teflon cassettes
- -wafer itself: chipping and breakage
- -maintenance: cleaning of chambers and transport mechanisms

Wet cleaning solutions

• RCA-1

NH₄OH:H₂O₂:H₂O (1:1:5)

- SC-1, standard clean; 50-80°C, 10-20 min
- APM; ammonia-peroxide mixture

• RCA-2

```
HCI:H<sub>2</sub>O<sub>2</sub>:H<sub>2</sub>O (1:1:6)
```

- SC-2; standard clean-2; 50-80°C, 10-20 min
- a.k.a. HPM, hydrogen chloride-peroxide mixture

• SPM

 $H_2SO_4:H_2O_2$ (4:1)

- sulphuric peroxide mixture; 120°C, 10-20 min
- a.k.a. Piranha
- DHF (dilute HF)

HF:H₂O (1:100-1000)

room temperature, 1 min

Cleaning procedure

Wet bench

Wafer cassette, batch cleaning

Single wafer cleaning

The repetitive use of ozonated water and dilute HF in the SCROD process

Clean defects

Megasonic cleaning in a batch immersion tool shows megasonicinduced damage of a 92 nm STI 300 mm wafer after an SC1/rinse/HF/rinse/dry process

Watermarks for a nonoptimized cleaning and drying process on an 82 nm deep trench isolation structure on a 300 mm wafer.

Finishing clean

- In situ NF₃/NH₃ remote plasma preclean
- Ar sputter preclean
- Remember about sputtering of chamber walls!

Typical analysis methods of wafers

Object	Analytical method
Particles	Laser scattering, SEM, EMPA, AES
Metals	TXRF (total reflection X-ray fluorescence), GFAAS (grafite furnace atomic absorption spectroscopy), ICP-MS
Organics	FTIR, TDS, TOF-SIMS
Moisture	TDS (thermal desorption spectroscopy)
Native oxide film (terminated states)	XPS, FTIR, TDS
Microroughness	AFM, STM, laser scattering

Summary II

- Microfabrication is impossible without cleaning and surface preparation
- Wafer cleaning is active cleaning