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Appendix A

Notation, Matrices, and Matrix Mathematics

A.1. INTRODUCTION

In this appendix, we outline the notation that we use in this book and then
some of the mathematics of matrices and closely related vectors. This
material is worth mastering, because notation is important in ensuring
consistency in many of the materials we present and, as will be discovered,
matrices are vital to pursuing many topics in spatial analysis (and many
other disciplines). In some cases, they provide a compact way of expressing
questions and problems, but they also provide a useful generic way of
representing the extremely important concept of adjacency in spatial
systems.
We have two aims: (1) that you acquire familiarity with the notation and

terminology of matrices and (2) that you become used to the way simple
arithmetic operations are performed with them.
Before starting, we must introduce the basics of mathematical notation.

A.2. SOME PRELIMINARY NOTES ON NOTATION

In usingmathematical notation in an introductory book, such as this, one has
to steer a course between two extremes. Too rigorous adherence to a particu-
lar notation scheme can mystify the reader just as easily as a too casual
approach can confuse. A further complication is that there are standard uses
in the literature that need to be followed if possible. In developing this book,
we have tried to be as consistent as possible and to follow some relatively
straightforward basics. We hope that readers unfamiliar with the field will
find this description of these basics useful.
A single instance of some variable or quantity is usually denoted by a

lowercase italicized letter. Sometimes this is the initial letter of the quantity
we’re talking about—say, h for height or d for distance. More often, in
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introducing a statistical measure, we don’t really care what the numbers
represent (because they could be anything), so we employ one of the com-
monly used mathematical letters, say, x or y. Commonly used letters are x, y,
z, n,m, and k. In themain text, these occur frequently, and generally have the
meanings described in Table A.1. In addition to these six, you will note that d,
w, and s also occur frequently in spatial analysis. The reason for use of an
upright bold symbol for s is made clear later, where vectors and matrices
are discussed.

A familiar aspect of mathematical notation is that letters from the Greek
alphabet are used alongside the Roman alphabet letters that you are used
to. Youmay already be familiar with mu (μ) for a population mean, sigma (σ)
for population standard deviation, chi ( χ) for a particular statistical distri-
bution, and pi (π) for . . . well, just for “pi.” In general, we try to avoid using
any Greek symbols other than these, although lambda (λ) is commonly used
for the intensity of a spatial process. In statistical logic, it is important to
keep in mind the distinction between some parameter of an entire defined
population and any estimate of that same parameter arrived at by analysis
of a sample from that population. Usually, which is which will be evident
from the context, but we also use Greek letters (as above) to indicate
population parameters. Estimates of parameters are indicated by a “hat”
symbol above the letter used for the parameter. Thus, the unknown
intensity of a spatial process is indicated as λ and an estimate of it as λ̂.

Symbols are introduced so that we can use mathematical notation to talk
about related values or to indicate mathematical operations that we want to
perform on sets of values. So, if h (or z) represents our height value, then h2 (or
z2) indicates “height value squared.” The symbols are a concise way of saying
the same thing, and that’s very important when we describe more complex
operations on data sets.

Table A.1 Commonly Used Symbols and Their Meaning in This Book

Symbol Meaning

x The Easting geographic coordinate or a general data value
y The Northing geographic coordinate or a general data value
z, a, b The numerical value of some measurement recorded at the geographic

coordinates (x, y)
n, m The number of observations in a data set
k Either an arbitrary constant or the number of entities in a spatial

neighborhood
d Distance
w The strength or “weight” of interaction between locations
s An arbitrary (x, y) location
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Two symbols that you will see often are i and j. However, i and j normally
appear in a particular way. To describe complex operations on sets of values,
we need another notational device: the subscript. Subscripts are small italic
letters or numbers below and to the right of normal mathematical symbols:
the i in zi is a subscript. A subscript is used to signify that there may be more
than one item of the type denoted by the symbol, so zi stands for a series or set
of z values: z1, z2, z3, and so on. This has various uses:

• A set of values is written between braces, so that z1; z2; . . . ; zn�1; znf g
tellsusthat therearenelements inthissetofzvalues. If required, theset
as awholemaybe denoted by a capital letter:Z. A typical value from the
set Z is denoted zi, and we can abbreviate the previous partial listing to
simply Z = {zi}, where it is understood that the set has n elements.

• In spatial analysis, it is common for the subscripts to refer to locations
at which observations have been made and for the same subscripts to
be used across a number of different data sets. Thus, h7 and t7 refer to
the values of two different observations—say, height and tempera-
ture—at the same location (“location 7”).

• Subscripts may also be used to distinguish different calculations of
(say) the same statistic on different populations or samples. Thus, μA
and μB denote the means of two different data sets, A and B.

The symbols i and j usually appear as subscripts in one of these ways. A
particularly common usage is to denote summation operations, indicated by
the Σ symbol (another Greek letter, this time capital sigma). This is where
subscripts come into their own, because we can specify a range of values that
are summed to produce a result. Thus, the sum

a1 � a2 � a3 � a4 � a5 � a6 �A:1�
is denoted

Xi�6
i�1

ai �A:2�

indicating that summation of a set of a values should be carried out on all the
elements from a1 to a6. For a set of n “a” values, this becomes

Xi�n
i�1

ai �A:3�

which is usually abbreviated to either

Xn
i�1

ai �A:4�

Notation, Matrices, and Matrix Mathematics 375
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or X
i

ai �A:5�

where the number of values in the set of a’s is understood to be n. If, instead of
the simple sum, we wanted the sum of the squares of the a values, then we
would have

Xn
i�1

a2
i �A:6�

instead. Or perhaps we have two data sets, A and B, and we want the sum of
the products of the a and b values at each location. This would be denoted

Xn
i�1

aibi �A:7�

In spatial analysis, more complex operations might be carried out between
two sets of values, and then we may need two summation operators. For
example,

c � k
Xn
i�1

Xn
j�1

zi � zj
� �2 �A:8�

indicates that c is to be calculated in two stages. First, we take each z value in
turn (the outer i subscript) and sum the square of its value minus every z
value in turn (the j subscript). You can figure this out by imagining first
setting i to 1 and calculating the inner sum, which would be

P
j z1 � zj
� �2. We

then set i to 2, and do the summation
P

j z2 � zj
� �2, and so on all the way toP

j zn � zj
� �2. The final “double summation” is the sum of all of these individ-

ual sums, and c is equal to this summultiplied by k. This will seem complex at
first, but you will get used to it.

A.3. MATRIX BASICS AND NOTATION

Amatrix is a rectangular array of numbers arranged in rows and columns; for
example,

2 4 7 �2
0 1 �3 3
5 �1 7 1

2
4

3
5 �A:9�
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As shown above, a matrix is usually written enclosed in square brackets.
Thismatrix has three rows and four columns. The size of amatrix is described
in terms of the number of rows by the number of columns, so the example
above is a “3 by 4” matrix. A square matrix has equal numbers of rows and
columns. For example,

3 1 2
1 �3 4
6 �1 0

2
4

3
5 �A:10�

is a 3 by 3 square matrix. When we wish to talk about matrices in general
terms, it is usual to represent them using uppercase ROMAN BOLD
characters:

A �
2 4 7 �2
0 1 �3 3
5 �1 7 1

2
4

3
5 �A:11�

Individual elements in a matrix are generally referred to using lowercase
italic characters, with their row and column numbers written as subscripts.
The element in the top left corner of the above matrix is a11 = 2, and element
a24 is the entry in row 2, column 4, and is equal to 3. In general, the subscripts
i and j are used to represent rows and columns, and a general matrix has n
rows and p columns, so we have

B �

b11 ∙ ∙ ∙ b1j ∙ ∙ ∙ b1p
..
.

O ..
.

bi1 bij bip
..
.

O ..
.

bn1 ∙ ∙ ∙ bnj ∙ ∙ ∙ bnp

2
6666664

3
7777775

�A:12�

Vectors and Matr ices

A vector is a quantity that has size and direction. It is convenient to represent
a vector graphically by an arrow of length equal to its size, pointing in the
vector’s direction. Typical vectors are shown in Figure A.1. In geography,
vectors might be used to represent winds or current flows. In a more abstract
application, they might represent migration flows. In terms of a typology of
spatial data (see Chapter 1), we can add vectors to our list of types of quantity
so that we have nominal, ordinal, interval, ratio, and vector types. In
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particular, we can imagine a vector field representing, for example, the wind
patterns across a region, as shown in Figure A.2.

How do we represent a vector mathematically, and what do vectors have to
do with matrices? In two-dimensional space (as in the diagrams), we can use
two numbers, representing the vector components in two perpendicular
directions. This should be familiar from geographic grid coordinate systems

Figure A.1 Typical vectors.

Figure A.2 A vector field.
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and is shown in Figure A.3. The three vectors shown have components a =
(�3, 4), b = (4, 3), and c = (6, �5) in the east–west and north–south directions,
respectively, relative to the coordinate system shown on the grid.
An alternative way to represent vectors is as column matrices, that is, as 2

by 1 matrices:

a � �3
4

� �
; b � 4

3

� �
; and c � 6

�5
� �

�A:13�

Thus, a vector is a particular type of matrix with only one column. As here,
vectors are usually denoted by a lowercase roman bold symbol. In the same
way, point locations relative to an origin can be represented as vectors. This is
why we sometimes use the notation in the main text where a point is
represented as

s � x
y

� �
�A:14�

Note also that we can represent a location in three dimensions in exactly
the same way. Instead of a 2 by 1 column matrix, we use a 3 by 1 column
matrix. More abstractly, in n-dimensional space, a vector will have n rows, so
that it is an n by 1 matrix.

A.4. SIMPLE MATRIX MATHEMATICS

Now let us review the mathematical rules by which matrices are
manipulated.

Figure A.3 Vectors in a coordinate space.
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Addit ion and Subtract ion

Matrix addition and subtraction are straightforward. Corresponding ele-
ments in the matrices in the operation are simply added (or subtracted) to
produce the result. Thus, if

A � 1 2
3 4

� �
�A:15�

and

B � 5 6
7 8

� �
�A:16�

then

A �B � 1 � 5 2 � 6
3 � 7 4 � 8

� �

� 6 8
10 12

� � �A:17�

Subtraction is defined similarly. It follows from this that A + B = B + A. It
also follows that A and B must each have the same number of rows and
columns for addition (or subtraction) to be possible.

For vectors, subtraction has a specific useful interpretation. If s1 and s2 are
two locations, then the vector from s1 to s2 is given by s2 � s1. This is
illustrated in Figure A.4, where the vector x from s1 to s2 is given by

x � s2 � s1

� 5
7

� �
� 8

3

� �

� �3
4

� � �A:18�

Mult ip l icat ion

Multiplication of matrices and vectors is more involved. The easiest way to
think of the multiplication operation is that we “multiply rows into columns.”
Mathematically, we can define multiplication as follows: If

C � AB �A:19�

380 GEOGRAPHIC INFORMATION ANALYSIS
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then the element in row i, column j of C is given by

cij �
X
k

aikbkj �A:20�

Thus, element in the ith row and jth column of the product ofA andB is the
sum of the products of corresponding elements from the ith row of A and the
jth column of B. Working through an example will make this clearer. If

A � 1 �2 3
�4 5 �6

� �
�A:21�

and

B �
6 �5
4 �3
2 �1

2
4

3
5 �A:22�

then, for the element in row 1, column 1 of the product C, we have the
sum of products of corresponding elements in row 1 of A and column 1 of B,
that is,

c11 � a11b11 � a12b21 � a13b31� 1 � 6� � � �2 � 4� � � 3 � 2� �
� 6 � 8 � 6
� 4

�A:23�

S1

S2

x s - s= 2 1

Figure A.4 Vector subtraction gives the vector between two point locations.
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Similarly, we have

c12 � 1 � �5� � � �2 � �3� � � 3 � �1� �
� �5 � 6 � �3� �
� �2

c21 � �4 � 6� � � 5 � 4� � � �6 � 2� �
� �24 � 20 � �12� �
� �16

c22 � �4 � �5� � � 5 � �3� � � �6 � �1� �
� 20 � �15� � � 6
� 11

�A:24�

This gives us the final product matrix

C � 4 �2
�16 11

� �
�A:25�

Figure A.5 shows how multiplication works schematically. Correspond-
ing elements from a row of the first matrix and a column of the second are
multiplied together and summed to produce a single element of the product

row i

co
lu

m
n

j

product element ij

sum of
products

Figure A.5 Matrix multiplication.
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matrix. This element’s position in the product matrix corresponds to the
row number from the first matrix and the column number from the second.
Because of the way matrix multiplication works, it is necessary that the
first matrix has the same number of columns as the second has rows. If this
is not the case, then the matrices cannot be multiplied. If you write the
matrices you want to multiply as nAp (n rows, p columns) and xBy (x rows, y
columns), then you can determine whether they multiply by checking that
the subscripts between the two matrices are equal:

nAp xBy �A:26�

If p = x, then this multiplication is possible and the product AB exists.
Furthermore, the product matrix has dimensions given by the “outer” sub-
scripts, n and y, so that the product will be an n by y matrix. On the other
hand, for

xBy nAp �A:27�

if y 6�n, then BA does not exist and multiplication is not possible. Note that
this means that, in general, for matrices

AB 6�BA �A:28�

and multiplication is not commutative: it is order dependent. This is impor-
tant when matrices are used to transform between coordinate spaces (see
Section A.6).
In the example above,

C � AB � 4 �2
�16 11

� �
�A:29�

but

D � BA �
26 �37 48
16 �23 30
6 �9 12

2
4

3
5 �A:30�

Here the productD is not even the same size as C, and this is not unusual.
However, it is useful to know that (AB)C = A(BC). The rule is that, provided
the written order of multiplications is preserved, multiplications may be
carried out in any sequence.

Notation, Matrices, and Matrix Mathematics 383
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Matr ix Transpos i t ion

The transpose of a matrix is obtained by swapping rows for columns. This
operation is indicated by a superscript T, so that the transpose of A is written
AT. Hence,

1 2 3
4 5 6

� �T
�

1 4
2 5
3 6

2
4

3
5 �A:31�

Note that this definition, combined with the row-column requirement for
multiplication, means that ATA and AAT always exist. The product aTa is of
particular interest when a is a vector, because it is equal to the sum of the
squares of the components of the matrix. This means that the length of a
vector a is given by

ffiffiffiffiffiffiffiffiffiffiffiffi
aTa� �p

, from Pythagoras’s Theorem. See Section A.6 for
more on this topic.

A.5. SOLVING SIMULTANEOUS EQUATIONS
USING MATRICES

We now come to one of the major applications of matrices. Suppose we have a
pair of equations in two unknowns, x and y, for example:

3x � 4y � 11
2x � 4y � �6 �A:32�

The usual way to solve this is to add amultiple of one of the equations to the
other, so that one of the unknown variables is eliminated, leaving an equation
in one unknown, which we can solve. The second unknown is then found by
substituting the first known value back into one of the original equations. In
this example, if we add the second equation to the first, we get

3 � 2� �x � 4 � 4� �y � 11 � �6� � �A:33�

which gives us

5x � 5 �A:34�

so that x = 1. Substituting this into (say) the first equation, we get

3 1� � � 4y � 11 �A:35�

384 GEOGRAPHIC INFORMATION ANALYSIS
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so that

4y � 11 � 3 �A:36�

whichwe easily solve to get y= 2. This is simple enough. But what if we have 3
unknowns, or 4, or 100, or 10,000? This is wherematrix algebra comes into its
own. To understand how, we must introduce two more matrix concepts: the
identity matrix and the inverse matrix.

The Ident i ty Matr ix and the Inverse Matr ix

The identity matrix, written I, is defined such that

IA � AI � A �A:37�
Think of the identitymatrix as thematrix equivalent of the number 1, since

1 � z � z � 1 � z, where z is any number. It turns out that the identity matrix
is always a square matrix with the required number of rows and columns for
the multiplication to go through. Elements in I are all equal to 1 on themain
diagonal from top left to bottom right. All other elements are equal to 0. The 2
by 2 identity matrix is

I � 1 0
0 1

� �
�A:38�

The 5 by 5 identity matrix is

I �
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2
66664

3
77775 �A:39�

and so on.
We now define the inverse A�1 of matrix A, such that

AA�1 � A�1A � I �A:40�
Finding the inverse of a matrix is tricky and is not always possible. For 2 by

2 matrices it is simple:

a b
c d

� ��1
� 1
ad � bc

d �b
�c a

� �
�A:41�
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For example if

A � 1 2
3 4

� �
�A:42�

then we have

A�1 � 1
1 � 4� � � 2 � 3� �

4 �2
�3 1

" #

� �1
2

4 �2
�3 1

" #

� �2 1
3
2

� 1
2

" #
�A:43�

We can check that this really is the inverse of A by calculating AA�1:

AA�1 � 1 2
3 4

� �
� �2 1

3
2

� 1
2

" #

�
1 � �2� � � 2 � 3

2

� �
1 � 1� � � 2 � � 1

2

� �

3 � �2� � � 4 � 3
2

� �
3 � 1� � � 4 � � 1

2

� �
2
64

3
75

� 1 0
0 1

� �
�A:44�

We leave it to you to check that the product A�1A also equates to I.
Unfortunately, finding the inverse for bigger matrices rapidly becomes

much more difficult as the matrix gets bigger. Fortunately, it isn’t necessary
for you to know how to perform matrix inversion. The important things to
remember are its definition and its relation to the identity matrix. Almost
invariably, computer routines using well-known and reliable algorithms will
be employed to invert any large matrices you come across.

Some other points are also worth noting:

• The quantity ad � bc is known as the matrix determinant and is
usually denoted Aj j. If Aj j � 0, then the matrix A has no inverse. The
determinant of a larger square matrix can be found recursively from
the determinants of smaller matrices known as the cofactors of the
matrix. You will find details in books on linear algebra (Strang, 1988,
is recommended).
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• It is also useful to know that

AB� ��1 � B�1A�1 �A:45�
You can verify this from

B�1A�1AB � B�1 A�1A
� �

B

� B�1 I� �B
� B�1B
� I

�A:46�

• Also useful is

AT
� ��1 � A�1� �T �A:47�

Now, Back to the Simultaneous Equat ions

Now we know about inverting matrices, we can get back to the simultaneous
equations:

3x � 4y � 11
2x � 4y � �6 �A:48�

The key is to realize that these can be rewritten as the matrix equation:

3 4
2 �4

� �
x
y

� �
� 11

�6
� �

�A:49�

Now, to solve the original equations, if we can find the inverse of the first
matrix on the left-hand side, we can premultiply both sides of the matrix
equation by the inverse matrix to obtain a solution for x and y directly. The
inverse of

3 4
2 �4

� �
�A:50�

is

� 1
20

�4 �4
�2 3

� �
�A:51�

Doing the premultiplication on both sides, we get

� 1
20

�4 �4
�2 3

� �
3 4
2 �4

� �
x
y

� �
� � 1

20
�4 �4
�2 3

� �
11
�6

� �
�A:52�
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which gives us

1 0
0 1

� �
x

y

� �
� � 1

20
�4 � 11� � � �4 � �6� �
�2 � 11� � � 3 � �6� �

� �

x

y

� �
� � 1

20
�44 � 24
�22 � 18

� �

� � 1
20

�20
�40

� �

x

y

� �
� 1

2

� �
�A:53�

which is the same solution for x and y that we obtained before. This all
probably seems a bit laborious for just two equations! The point is that this
approach can be scaled up very easily to much larger sets of equations, and
provided we can find the inverse of the matrix on the left-hand side, the
equations can be solved. We can generalize this result. Any system of
equations can be written

Ax � b �A:54�

and the solution is given by premultiplying both sides by A�1 to get

A�1Ax � A�1b �A:55�

Since A�1A = I, we then have

Ix � x � A�1b �A:56�

This is an amazingly compressed statement of the problem of solving any
number of equations. Remember that the matrix equation Ax = b can
represent a system of hundreds or even thousands of equations, not just
two or three. Note also that if we calculate the determinant of A and find
that it is zero, then we know that the equations cannot be solved, since A
has no inverse. Furthermore, having solved this system once by finding
A�1, we can quickly solve it for any values on the right-hand side of the
equation.

Because of this general result, matrices have become central to modern
mathematics, statistics, computer science, and engineering. In a smaller
way, they are important in spatial analysis, as will become clear in the main
text.
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A.6. MATRICES, VECTORS, AND GEOMETRY

Another reason for the importance of matrices is their usefulness in repre-
senting coordinate geometry. We have already seen that a vector (in two or
more dimensions) may be considered a column vector where each element
represents the vector’s length parallel to each of the axes of the coordinate
space. We expand here on a point that we have already touched on relating to
the calculation of the quantity aTa for a vector. As we have already men-
tioned, this quantity is equal to the sum of the squares of the components of a,
so that the length of a is given by

jjajj � ffiffiffiffiffiffiffiffiffi
aTa

p �A:57�
This result applies regardless of the number of dimensions of a.
We can use this result to determine the angle between any two vectors a

and b. In Figure A.6, the vector a forms an angle A with the positive x axis,
and b forms angle B. The angle between the two vectors (B � A) we label θ.
Using the well-known trigonometric equality

cos B � A� � � cosA cosB � sinA sinB �A:58�

we have

cosθ � cosA cosB � sinA sinB

� xa
jjajj �

xb
jjbjj

	 

� ya

jjajj �
yb
jjbjj

	 


� xaxb � yayb
jjajjjjbjj

� aTbffiffiffiffiffiffiffiffiffi
aTa

p ffiffiffiffiffiffiffiffiffi
bTb

p

�A:59�

Figure A.6 Derivation of the expression for the angle between
two vectors (see text).
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The quantity aTb is known as the dot product or scalar product of the two
vectors and is simply the sum of products of corresponding vector compo-
nents. One of the most important corollaries of this result is that two vectors
whose dot product is equal to zero are perpendicular or orthogonal. This
follows directly from the fact that cos 90° is equal to zero. Although we have
derived this result in two dimensions, it again scales to any number of
dimensions, even if we have trouble understanding what “perpendicular”
means in nine dimensions! The result is also considered to apply to matrices,
so that if ATB = 0, then we say that matrices A and B are orthogonal.

The Geometr ic Perspect ive on Matr ix Mult ip l icat ion

In this context, it is useful to introduce an alternative way of understanding
thematrix multiplication operation. Consider the the 2 × 2matrix,A, and the
spatial location vector, s

A � 0:6 0:8
�0:8 0:6

� �
; s � 3

4

� �
�A:60�

The product, As, of these matrices is

As � 5
0

� �
�A:61�

We can look at a diagram of this operation in two-dimensional coordinate
space, as shown on the left-hand side of Figure A.7. The vectorAs is a rotated
version of the original vector s. If we perform the same multiplication on a
series of vectors, collected together in the two-row matrix S so that each
column of S is a vector,

AS � 0:6 0:8
�0:8 0:6

� �
1 3 0 �1 �2:5
1 �2 5 4 �4

� �

� 1:4 0:2 4 2:6 �4:7
�0:2 �3:6 3 3:2 �0:4

� � �A:62�

then we can see that multiplication by the matrix A may be considered
equivalent to a clockwise rotation of the vectors (through 53.13° for the
record). These operations are shown on the right-hand side of Figure A.7
for confirmation.

In fact, any matrix multiplication may be thought of as a transformation
of some coordinate space. This property of matrices has ensured their
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widespread use in computer graphics, where they are an efficient way of
doing the calculations required for drawing perspective views. Transfor-
mation matrices have the special property that they project the three
dimensions of the objects displayed into the two dimensions of the
screen. By changing the projection matrices used, we change the viewer’s
position relative to the displayed objects. This perspective on matrices
is also important for transforming between geographic projections (see
Chapter 11).
This perspective also provides an interpretation of the inverse of a matrix.

Sincemultiplication of a vector s by amatrix, followed bymultiplication by its
inverse, returns s to its original value, the inverse of a matrix performs the
opposite coordinate transformation to that of the original matrix. The inverse
of the matrix above therefore performs a 53.13° counterclockwise rotation.
You may care to try this on some examples.

A.7. EIGENVECTORS AND EIGENVALUES

Two properties important in statistical analysis are the eigenvectors and
eigenvalues of a matrix. These only make intuitive sense in light of the
geometric interpretation of matrices we have just introduced—although you
will probably still find it a stretch. The eigenvectors e1 . . . enf g and

Figure A.7 Matrix multiplication as a transformation of coordinate space. In the
left-hand grid, the multiplication As is shown. In the right-hand grid, each column

of S is shown as a vector that is rotated after multiplication by A (see text).
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eigenvalues λ1 . . . λnf g of an n × n matrix A each satisfy the following
equation:

Aei � λei �A:63�
Seen in terms of the multiplication-as-transformation view, this means

that the eigenvectors of a matrix are directions in coordinate space that are
unchanged under transformation by that matrix. Note that the equation
means that the eigenvalues and eigenvectors are associated with one
another in pairs λ1; e1� �; λ1; e1� �; . . . λn; en� �f g. The scale of the eigenvectors
is arbitrary, since they appear on both sides of the above equation, but
normally they are scaled so that they have unit length. We won’t worry too
much about how the eigenvectors and eigenvalues of a matrix are deter-
mined (see Strang, 1988, for details). As an example, the eigenvalues and
eigenvectors of the matrix in our simultaneous equations

3 4
2 �4

� �
�A:64�

are

λ1 � 4; e1 � 0:9701
0:2425

� �	 

and λ2 � �5; e2 � �0:4472

0:8944

� �	 

�A:65�

It is straightforward to check this result by substitution into the defining
equation above.

Figure A.8 may help to explain the meaning of the eigenvectors and
eigenvalues. The unit circle shown is transformed to the ellipse shown under
multiplication by the matrix we have been discussing. However, the eigen-
vectors have their direction unchanged by this transformation. Instead, they
are each scaled by a factor equal to the corresponding eigenvalue.

An important result (again, see Strang, 1988) is that the eigenvectors of a
symmetricmatrix aremutually orthogonal. That is, ifA is symmetric about its
main diagonal, then any pair of its eigenvectors ei and ej have a dot product
eT
i ej � 0. For example, the symmetric matrix

1 3
3 2

� �
�A:66�

has eigenvalues and eigenvectors

4:541; 0:6464
0:7630

� �	 

and �1:541; �0:7630

0:6464

� �	 

�A:67�
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and it is easy to confirm that these vectors are orthogonal. The widely used
method, principal components analysis, makes use of this result.
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Harcourt Brace Jovanovich).

Figure A.8 The geometric interpretation of eigenvectors and
eigenvalues (see text).
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