```
SCHEDULE
    Date Topic
1. Wed 01.03. Lec-1: Introduction
2. Mon 06.03. Lec-2: Crystal Chemistry & Tolerance parameter
3. Mon 06.03. EXERCISE 1
4. Wed 08.03. Lec-3: Crystal Chemistry & BVS
5. Fri 10.03. Lec-4: Symmetry & Point Groups
6. Mon 13.03. EXERCISE 2
7. Wed 15.03. Lec-5: Crystallography & Space Groups (Linda)
8. Fri 17.03. Lec-6: XRD & Reciprocal lattice (Linda)
9. Mon 20.03. EXERCISE 3 (Linda)
10. Fri 31.03. Lec-7: Rietveld (Linda)
11. Mon 03.04 EXERCISE 4: Rietveld (Linda)
12. Wed 12.04. Lec-8: ND & GI-XRD
13. Fri 14.04. Lec-9: XRR (Topias)
14. Mon 17.04. EXERCISE 5: XRR (Topias)
15. Wed 19.04. Lec-10: Synchrotron radiation & XAS & EXAFS
16. Fri 21.04. Mössbauer
17. Fri 21.04. EXERCISE 6
18. Thu 27.04. Seminars: XPS, FTIR, Raman
19. Fri 28.04. Seminars: ED, HRTEM, SEM, AFM
EXAM
```


Periodic table of the elements

ס			\square Alkali metals				\square Halogens													
	group		\square Alkaline-earth metals				\square Noble gases													
	1*		\square Transition metals				Rare-earth elements (21, 39, 57-71) and lanthanoid elements (57-71 only)						$13 \quad 14$		15	16		18		
1	${ }^{1} \mathrm{H}$	2		Other	metals								2 He							
	3	4		Other	onme	as	\square A	ctinoid	elemen						5	6	7	8	9	10
2	Li	Be											B	C	N	0	F	Ne		
	11	12											13	14	15	16	17	18		
3	Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	P	S	Cl	Ar		
4	$\begin{gathered} 19 \\ K \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ca} \end{gathered}$	$\begin{array}{\|c} 21 \\ \mathrm{Sc} \end{array}$	$\begin{array}{\|r\|} \hline 22 \\ \mathrm{Ti} \end{array}$	$\begin{array}{\|c\|} \hline 23 \\ v \end{array}$	$\begin{array}{\|c} 24 \\ \mathrm{Cr} \end{array}$	$\begin{aligned} & 25 \\ & \mathbf{M n} \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ \mathrm{Fe} \end{array}$	$\begin{gathered} 27 \\ \text { Co } \end{gathered}$	$\begin{array}{\|c\|} \hline 28 \\ \mathrm{Ni} \end{array}$	$\begin{gathered} 29 \\ \mathrm{Cu} \end{gathered}$	$\begin{aligned} & 30 \\ & Z n \end{aligned}$	$\begin{gathered} 31 \\ \text { Ga } \end{gathered}$	$\begin{gathered} 32 \\ \mathrm{Ge} \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \end{gathered}$	$\begin{gathered} 34 \\ \mathrm{Se} \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \end{gathered}$	$\begin{array}{\|c\|} \hline 36 \\ \mathrm{Kr} \end{array}$		
5	$\begin{aligned} & 37 \\ & \mathbf{R b} \end{aligned}$	$\begin{gathered} 38 \\ \mathrm{Sr} \end{gathered}$	$\begin{array}{\|r\|} \hline 39 \\ Y \end{array}$	$\begin{array}{\|c\|} \hline 40 \\ \mathrm{Zr} \end{array}$	$\begin{array}{\|c\|} \hline 41 \\ \mathrm{Nb} \end{array}$	$\begin{aligned} & \hline 42 \\ & \text { Mo } \end{aligned}$	$\begin{gathered} 43 \\ \mathrm{Tc} \end{gathered}$	$\begin{gathered} \hline 44 \\ \text { Ru } \end{gathered}$	$\begin{aligned} & \hline 45 \\ & R h \end{aligned}$	$\begin{aligned} & 46 \\ & \text { Pd } \end{aligned}$	$\begin{gathered} 47 \\ \mathrm{Ag} \end{gathered}$	$\begin{gathered} 48 \\ C d \end{gathered}$	$\begin{aligned} & 49 \\ & \text { In } \end{aligned}$	$\begin{aligned} & 50 \\ & \mathrm{Sn} \end{aligned}$	51	$\begin{gathered} 52 \\ \mathrm{Te} \end{gathered}$	53	$\begin{gathered} 54 \\ \mathrm{Xe} \end{gathered}$		
6	$\begin{array}{\|c} 55 \\ \text { Cs } \end{array}$	$\begin{gathered} 56 \\ \mathrm{Ba} \end{gathered}$	$\begin{array}{\|c\|} \hline 57 \\ \text { La } \end{array}$	$\begin{array}{\|c\|} \hline 72 \\ \mathbf{H f} \end{array}$	$\begin{array}{\|c} 73 \\ \mathrm{Ta} \end{array}$	$\begin{array}{\|c\|} \hline 74 \\ w \end{array}$	$\begin{gathered} 75 \\ R e \end{gathered}$	$\begin{array}{\|c} 76 \\ \text { Os } \end{array}$	$\begin{array}{\|c\|} \hline 77 \\ \text { Ir } \end{array}$	$\begin{array}{\|c\|} \hline 78 \\ \mathrm{Pt} \end{array}$	$\begin{gathered} 79 \\ \mathrm{Au} \end{gathered}$	$\begin{gathered} 80 \\ \mathrm{Hg} \end{gathered}$	$\begin{array}{\|c\|} \hline 81 \\ \text { TI } \end{array}$	$\begin{gathered} 82 \\ \mathrm{~Pb} \end{gathered}$	$\begin{gathered} 83 \\ B i \end{gathered}$	84	85	$\begin{gathered} 86 \\ R n \end{gathered}$		
7	$\begin{array}{\|c\|} \hline 87 \\ \mathrm{Fr} \end{array}$	$\begin{gathered} 88 \\ R a \end{gathered}$	$\begin{array}{\|c\|} \hline 89 \\ \text { Ac } \end{array}$	$\begin{gathered} 104 \\ R f \end{gathered}$	$\begin{gathered} 105 \\ \text { Db } \end{gathered}$	$\begin{gathered} 106 \\ \mathrm{Sg} \end{gathered}$	$\begin{array}{\|c\|} \hline 107 \\ B h \end{array}$	$\begin{gathered} 108 \\ \mathrm{Hs} \end{gathered}$	$\begin{array}{\|c\|} \hline 109 \\ \text { Mt } \end{array}$	$\begin{gathered} 110 \\ \text { Ds } \end{gathered}$	$\begin{gathered} 111 \\ R g \end{gathered}$	$\begin{gathered} 112 \\ C n \end{gathered}$	$\begin{array}{\|c\|} \hline 113 \\ \mathrm{Nh} \end{array}$	$\begin{array}{\|r\|} \hline 114 \\ \mathrm{FI} \end{array}$	$\begin{gathered} 115 \\ \text { Mc } \end{gathered}$	116 Lv	117 Ts	118 Og		

lanthanoid series 6	$\begin{gathered} 58 \\ \mathrm{Ce} \end{gathered}$	$\begin{array}{\|c\|} 59 \\ \mathrm{Pr} \end{array}$	$\begin{gathered} 60 \\ \mathrm{Nd} \end{gathered}$	$\begin{aligned} & 61 \\ & \mathrm{Pm} \end{aligned}$	$\begin{aligned} & 62 \\ & \mathrm{Sm} \end{aligned}$	$\begin{array}{\|c\|} \hline 63 \\ \hline \end{array}$	$\begin{gathered} 64 \\ \text { Gd } \end{gathered}$	$\begin{gathered} 65 \\ \mathrm{~Tb} \end{gathered}$	$\begin{array}{\|c\|} \hline 66 \\ \text { Dy } \end{array}$	$\begin{aligned} & 67 \\ & \mathrm{Ho} \end{aligned}$	$\begin{gathered} 68 \\ E r \end{gathered}$	$\begin{aligned} & 69 \\ & \mathrm{Tm} \end{aligned}$	$\begin{aligned} & 70 \\ & Y b \end{aligned}$	$\begin{array}{\|c} \hline 71 \\ L u \end{array}$
actinoid series 7	$\begin{array}{\|c\|} \hline 90 \\ \text { Th } \end{array}$	$\begin{aligned} & 91 \\ & \mathrm{~Pa} \end{aligned}$	$\begin{array}{\|c\|} \hline 92 \\ \mathbf{U} \end{array}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \end{aligned}$	$\begin{aligned} & 95 \\ & \text { Am } \end{aligned}$	$\begin{aligned} & 96 \\ & \mathrm{Cm} \end{aligned}$	$\begin{array}{\|c\|} \hline 97 \\ \text { Bk } \end{array}$	$\begin{array}{\|c\|} \hline 98 \\ \text { Cf } \end{array}$	$\begin{gathered} 99 \\ \hline \text { Es } \end{gathered}$	$\begin{gathered} 100 \\ \mathrm{Fm} \end{gathered}$	$\begin{aligned} & 101 \\ & \text { Md } \end{aligned}$	$\begin{array}{\|c\|} \hline 102 \\ \text { No } \end{array}$	103 Lr

*Numbering system adopted by the International Union of Pure and Applied Chemistry (IUPAC).
© Encyclopædia Britannica, Inc.

LECTURE 3: CRYSTAL CHEMISTRY \& BVS

- Correlations between: lonic radius (r), Coordination number (CN), Bond distance (d) \& Valence state (V)
- Bond Valence Sum (BVS): quantitative measure for the correlation
- Pauling's second rule was a "simple-minded" but important first step for BVS concept
- Also, recall what we discussed in the previous lecture on the Tolerance parameter concept

BOND \& VALENCE

ORGANIC COMPOUNDS

- Bonds tend to adopt integer valence values: bond order is single, double or triple
- Bond order correlates with the bond length: the higher the order, the shorter the bond
- Each atom in on organic molecule has a valence value that equals to the number of bonds it forms
- FOR EXAMPLE: formaldehyde HCHO

Bonds: $2 \times \mathrm{C}-\mathrm{H}, 1 \times \mathrm{C}=0$
Valences: C : 4, O:2, H:1

$$
\begin{gathered}
\stackrel{\mathcal{H}}{1} \\
\mathcal{H} \cdot \mathcal{C}=O
\end{gathered}
$$

INORGANIC COMPOUNDS

- Bonds do not adopt integer valence values only
- FOR EXAMPLE: Aluminum is trivalent in all its compounds but exists commonly in either tetrahedral or octahedral coordination

Electron density and energy density view on the atomic interactions in SrTiO_{3}

Elizabeth A. Zhurova ${ }^{\text {a }}$ and Vladimir G. Tsirelson ${ }^{\mathbf{b}}{ }^{\mathbf{*}}$

The results of topological analysis of the electron density in an SrTiO_{3} crystal based on the experimental (at 145 K) and

(b)
(c)

Received 27 March 2002
Accepted 29 May 2002

PAULING's SECOND RULE (Valence-Sum-Rule)

- Valence sum of an atom is equal to the sum of bond valences (BV) around it
- Valence sum of each atom is equal to the oxidation state (OS) of it

EXAMPLE-1: Perovskite CaTiO_{3}
OS(Ti) $=+4 \& C N(T i)=6$, hence $\operatorname{BV}(\mathrm{Ti}-\mathrm{O})=4 / 6=0.67$ $\mathrm{OS}(\mathrm{Ca})=+2 \& \mathrm{CN}(\mathrm{Ca})=12$, hence $\mathrm{BV}(\mathrm{Ca}-\mathrm{O})=2 / 12=0.167$
\rightarrow since OS(O) $=-2=-(2 \times 0.67+4 \times 0.167), C N(O)=6$
EXAMPLE-1: Rutile TiO_{2}
$\mathrm{OS}(\mathrm{Ti})=+4 \& \mathrm{CN}(\mathrm{Ti})=6$, hence $\mathrm{BV}(\mathrm{Ti}-\mathrm{O})=4 / 6=0.67$
\rightarrow since OS(O) $=-2=-(3 \times 0.67), \mathrm{CN}(\mathrm{O})=3$
EXAMPLE-3: Silicate minerals consist of SiO_{4} tetrahedra. Silicon has the oxidation state of +4 , and $\mathrm{CN}=4$, hence each $\mathrm{Si}-\mathrm{O}$ bond valence is $4 / 4=1$. Since oxygen valence is -2 , each oxygen can make only two bonds to Si atoms. Hence, in silicates the SiO_{4} tetrahedra can only share corners (not e.g. edges)

- NOTE: stability of crystals decrease when the polyhedral share edges

Linus Pauling (1901-1994)

- American chemist, biochemist and peace activist, graduated from Oregon State University
- One of the founders of quantum chemistry: contributions to chemical bonding, electronegativity, orbital hybridization, molecular biology, protein structure, X-ray crystallography
- Nobel Prize in Chemistry in 1954, Nobel Peace Prize in 1962

Bond-Valence-Sum (BVS) Calculation

- Quantitative relation between the bond valence and the bond length
- Bond valence can be fractional \& Neighbours may be unequivalent
- The shorter the bond, the stronger it is, and the larger the s_{ij} is
- Empirical equation:
$\mathrm{s}_{\mathrm{ij}}=\exp \left[\left(\mathrm{R}_{\mathrm{ij}} \mathrm{i}_{\mathrm{ij}}-\mathrm{d}_{\mathrm{ij}}\right) / 0.37\right]$
$V_{i}= \pm \sum s_{i j}$
- $\mathrm{R}^{\mathbf{0}}{ }_{\mathrm{ij}}$ values tabulated (for various i-j combinations)

1. I.D. Brown, Chem. Soc. Reviews 7, 359-376 (1978).
2. Brown \& Altermatt, Acta Cryst. B41, 244-247 (1985).
3. Brese \& O'Keeffe, Acta Cryst. B 47, 192-197 (1991).
4. O'Keeffe, Acta Cryst. A 46, 138-142 (1990).

Examples of \mathbf{R}^{0} Values

$\mathrm{Ca}^{2+}-\mathrm{O}^{2-}$	1.933
$\mathrm{Sr}^{2+}-\mathrm{O}^{2-}$	2.118
$\mathrm{Ba}^{2+}-\mathrm{O}^{2-}$	2.265
$\mathrm{Fe}^{2+}-\mathrm{O}^{2-}$	1.734
$\mathrm{Fe}^{3+}-\mathrm{O}^{2-}$	1.759
$\mathrm{Cu}^{+}-\mathrm{O}^{2-}$	1.60
$\mathrm{Cu}^{2+}-\mathrm{O}^{2-}$	1.679
$\mathrm{Cu}^{3+}-\mathrm{O}^{2-}$	1.73
$\mathrm{Cu}^{2+}-\mathrm{S}^{2-}$	2.054
$\mathrm{Cu}^{3+}-\mathrm{Cl}^{-}$	1.979
$\mathrm{Cu}^{3+}-\mathrm{F}^{-}$	1.58

COPPER OXIDES

Compound	CN(Cu)	Cu-O bonds	$V_{\text {nom }}(\mathrm{Cu})$	BVS : $V_{\text {cu }}$
$\mathrm{Cu}_{2} \mathrm{O}$	2	2×1.849	+1	+1.02
CuO	4	$\begin{aligned} & 2 \times 1.951 \\ & 2 \times 1.961 \end{aligned}$	+II	+1.89
$\mathrm{Sr}_{2} \mathrm{CuO}_{3}$	4	$\begin{aligned} & 2 \times 1.958 \\ & 2 \times 1.967 \end{aligned}$	+II	+1.86
KCuO_{2}	4	$\begin{aligned} & 2 \times 1.815 \\ & 2 \times 1.832 \end{aligned}$	+III	+3.11
LaCuO_{3}	6	6×1.952	+III	+3.29
$\mathrm{LaCuO}_{2.5}$	5	$\begin{aligned} & 2 \times 1.941 \\ & 2 \times 1.966 \\ & 1 \times 2.285 \end{aligned}$	+II	+2.10

$\mathrm{R}^{0}: \mathrm{Cu}^{+}-\mathrm{O}^{2-1} 1.600 \AA, \mathrm{Cu}^{2+-\mathrm{O}^{2-1}} 1.679 \AA, \mathrm{Cu}^{3+-\mathrm{O}^{2-1}} 1.730 \AA$

BVS (Bond Valence Sum)

- Empirical but highly useful tool !!!
- Validation of crystal structure determination results
- "Inspecting" crystal structures (e.g. to find bonding instabilities)
- Location of light atoms (H, Li, etc.) that are hard to find by XRD, by examining the valences of the surrounding atoms
- Prediction of bond distances: $\mathrm{d}_{\mathrm{ij}}=\mathrm{R}_{\mathrm{ij}}-0.37 \mathrm{x} \ln \mathrm{s}_{\mathrm{ij}}$ (can handle unsymmetrical coordination environments)
- Prediction/design of new materials/structures (for synthesis efforts); c.f. Tolerance parameter
- Determining the charge distribution between two (or multiple) different sites of the same element in the same crystal structure
- Reasoning/prediction of structural distortions \rightarrow important e.g. for ferroelectrics, piezoelectrics and magnetics

Verwey Transition

Distorting the environment of an atom by lengthening some bonds and shortening others while holding the average bond length constant, results in an increase in the bond valence sum

Distortion around a certain (transition metal) atom, is likely to occur if the atom is located on a crystal site that is too large (BVS too small);
In such a case the distortion would increase the BVS towards the ideal value.

FeTiO_{3} (IImenite)

BVS calculation confirms that:
Fe occupies the larger (red) octahedra \& Ti the smaller (blue) octahedra in the IImenite structure

Bond Distances

$$
\begin{gathered}
\mathrm{Fe}-\mathrm{O}=3 \times 2.07,3 \times 2.20 \\
\mathrm{Ti}-\mathrm{O}=3 \times 1.88,3 \times 2.09 \\
\text { Bond Valence Sums } \\
\mathrm{Fe}=3 \times 0.40+3 \times 0.28=2.04 \\
\hline \hline \mathcal{T i} i=3 \times 0.84+3 \times 0.48=3.96 \\
O=0.40+0.28+0.84+0.48=2.00
\end{gathered}>\mathrm{Fe}^{2+}
$$

$\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}$ (or $\mathrm{Ba}_{2} \mathrm{YCu}(1) \mathrm{Cu}(2)_{2} \mathrm{O}_{7-\delta}$ to more properly reflect the structure) is a notorious example of the huge impact of oxygen (non)stoichiometry

Phase Diagram of High-T ${ }_{c}$ Superconductors

Oxygen content in $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}$ controls the valence state of copper, and thereby the superconductivity (Tc value)

Illustration how the $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}$ structure is derived from the perovskite structure through cation ordering and ordered oxygen vacancies

A-site ordered \& oxygen-vacancy ordered TRIPLE PEROVSKITE $A_{2}^{\prime} A^{\prime \prime} B_{3} \mathrm{O}_{8}(=9-1)$

$\mathrm{Ba}_{2} \mathrm{YCu}(1) \mathrm{Cu}_{(2)} \mathrm{O} \mathrm{O}_{\text {(= 9-2) }}$

$\mathrm{Cu}(1) \mathrm{O}$ chain

$\mathrm{Cu}(2) \mathrm{O}_{2}$ planes

$$
\mathrm{Cu}(1) \mathcal{B a} a_{2} \mathscr{Y C u}(2)_{2} \mathrm{O}_{7-\delta}
$$

BVS calculation shows that with decreasing oxygen content in $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}$ the valence state of bot $\mathrm{Cu}(1)$ and $\mathrm{Cu}(2)$ decrease. Most importantly, the trend in $\mathrm{Cu}(2)$ valence follows the trend in T_{c}, indicating the valence of $\mathrm{Cu}(2)$ is important for the superconductivity.
R.J. Cava et al., Physica C 165, 419 (1990).

