Introduction to simulation with COMSOL®

Lecture 4: Quantum circuits 08.03.2023

Simulation....Why?

Single qubit chip design

Single-qubit quantum processor

Circuit model for single qubit chip

Single-qubit quantum processor

Lumped model

Aalto University School of Science

Bare minimum for a single-qubit quantum processor!

Simulations using Comsol

Image: Capacitances Image: Capacitanc

COMSOL Electrostatic simulation:

- 1. Design
- 2. Physics: Electrostatic
- 3. Study: Stationary
- 4. Define materials and terminals
- 5. Mesh the structure
- 6. Derived results(capacitance)

Aalto University School of Science

EM frequency domain

COMSOL EM simulation:

- 1. Design
- 2. Physics: Electromagnetic waves, frequency domain (emw)
- 3. Study: Frequency domain
- 4. Define materials and ports
- 5. Mesh the structure
- 6. Derived results
 - S parameter, EM fields etc.

Capacitor simulation

Capacitors

Single-qubit quantum processor M99 CTEST QCD

Aalto University School of Science

Coplanar waveguide . Stant (CPW) resonator

Capacitors

Partial differential equation (PDE) $Laplace equation \quad \nabla^2 V = \frac{d^2 V}{dx^2} + \frac{d^2 V}{dy^2} + \frac{d^2 V}{dz^2} = 0$ $V(z = d) = V_0$ Boundary value problem

Parallel plate capacitor Ζ

$$\varepsilon = \varepsilon_{\rm r} \varepsilon_0$$

$$V(z=0)=0$$

$$\frac{d^2 V}{dz^2} = 0 \implies V(z) = \frac{V_0}{d}z$$

$$\vec{E} = -\nabla V = -\frac{V_0}{d}\hat{z}$$
$$\oint \vec{E} \cdot d\vec{S} = \frac{1}{\varepsilon} \iint \rho \, dA$$

Nice closed form solution!

Capacitors

Туре	Capacitance	Comment
Parallel-plate capacitor	arepsilon A/d	$d \downarrow \overbrace{\varepsilon}^{A}$ $\varepsilon: \text{Permittivity}$
Concentric cylinders	$\frac{2\pi \varepsilon \ell}{\ln(R_2/R_1)}$	ε: Permittivity
Pair of parallel wires ^[13]	$rac{\piarepsilon\ell}{\mathrm{arcosh}\!\left(rac{d}{2a} ight)} = rac{\piarepsilon\ell}{\mathrm{ln}\!\left(rac{d}{2a}+\sqrt{rac{d^2}{4a^2}-1} ight)}$	
Wire parallel to wall ^[13]	$rac{2\piarepsilon \ell}{{ m arcosh}{\left(rac{d}{a} ight)}} = rac{2\piarepsilon \ell}{{ m ln}{\left(rac{d}{a}+\sqrt{rac{d^2}{a^2}-1} ight)}}$	a: Wire radius d: Distance, $d > a$ l: Wire length
Two parallel coplanar strips ^[14]	$arepsilon \ell rac{K\left(\sqrt{1-k^2} ight)}{K(k)}$	d: Distance w_1, w_2 : Strip width k_m : $d/(2w_m+d)$ k^2 : k_1k_2 K: Complete elliptic integral of the first kind ℓ : Length
Concentric spheres	$\frac{4\pi\varepsilon}{\frac{1}{R_1}-\frac{1}{R_2}}$	ϵ : Permittivity

@ wikipedia

Aalto University School of Science

COMSOL Multiphysics

Aalto University School of Science

@ Comsol

COMSOL Multiphysics

Physics modules

Electromagnetics

Fluid Dynamics

Solid Mechanics

Mathematical models

Partial Differential Equations (PDEs)

Ordinary Differential Equations (ODEs)

Differential-Algebraic Equations (DAEs)

Numerical models

Finite Element Method (FEM)

Boundary Element Method (BEM)

Finite Difference Method (FDM)

COMSOL Workshop

You can download the software from https://download.aalto.fi

Check out the installation instruction from mycourses webpage *Announcement* forum

Let's move to COMSOL demo...