Frequency domain EM simulations using COMSOL®

Lecture 5: Quantum circuits 13.03.2022

Lec4 Recap: electrostatic

Superconducting qubit chip

Capacitances

COMSOL Electrostatic simulation:

- 1. Design
- 2. Physics: Electrostatic
- 3. Study: Stationary
- 4. Define materials and terminals
- 5. Mesh the structure
- 6. Derived results(capacitance)

Necessity of EM simulation

Frequency domain EM simulation

Electrostatic and EM frequency domain

COMSOL Electrostatic simulation:

- 1. Design
- 2. Physics: Electrostatic
- 3. Study: Stationary
- 4. Define materials and terminals
- 5. Mesh the structure
- 6. Derived results(capacitance)

EM frequency domain

COMSOL EM simulation:

- 1. Design
- 2. Physics: Electromagnetic waves, frequency domain (emw)
- 3. Study: Frequency domain
- 4. Define materials and ports
- 5. Mesh the structure
- 6. Derived results
 - S parameter, EM fields etc.

S-parameter:

Port 1
Port 2

$$S_{11}$$
 S_{12} S_{13} S_{14}
 S_{21} S_{22} S_{21} S_{24}
 S_{31} S_{32} S_{33} S_{24}
 S_{41} S_{42} S_{43} S_{44}
Port 4

Transmission line resonator:

Microstrip resonator (demo)

CPW resonator (short demo)

Let's move to COMSOL demo...