

MEC-E6007 Mechanical Testing of Materials

Sven Bossuyt March, 2023

load frames, grips, and actuators

Course Content: learning from breaking things

• Load

- loadframes, actuators, and grips
- quasi-static, dynamic, and cyclic loading
- Measure
 - measurement of force, displacement, and strain
 - digital image correlation and other full-field measurement techniques
- Analyse
 - selected special challenges in mechanical testing (ask for yours!)
 - introduction to inverse problem methodologies in experimental mechanics

Load frames

rigid physical platform anchoring the grips and actuators for mechanical testing

- "universal testing machines"
- modular assemblies
- special purpose
 - torsion, axial+torsion, cruciform biaxial, triaxial, hydrostatic pressure, ...
 - sheet metal forming, bulge testing, ...
 - environmental chambers, microscopes, tomographs, synchrotron or neutron beam lines, ...

load frame stiffness

- including grips, fixtures and connections
- determines dynamic response at fracture or serrated flow
 - dynamic response of load cell matters too

Tensile grips

apply boundary conditions

- slipping or stress concentrations may affect observed behaviour
- lateral gripping force needed to transfer axial force by friction
 - wedge action increases lateral force when axial force increases
 - mechanical, pneumatic, or hydraulic action
 - in some cases this does not work
 - end tabs glued to the specimen's grip area to transfer the force
 - a pin through a hole in the specimen to prevent complete slipping
- different grips for flat or round specimens
- special grips for textile or fibers
- hinges to avoid bending moments

Compression testing

easy to do, easy to do wrong

- stability against buckling
- care needed to avoid bending moments
 - need to critically examine results to distinguish material behaviour from effects of uneven loading
- carbide inserts to spread the load

special specimen shapes to achieve particular stress state

• e.g. "Brazilian disk"

Flexure testing

often adjustable to change base length

- 3-point or 4-point bending most common
- stoppers to keep specimen centered
- stress concentration at rollers

larger displacement and lower actuating force than axial testing smaller area of maximum stress

• statistical correction for distribution of defects

Shear testing

difficult to maintain pure shear throughout deformation

- deformation tends to induce a tensile component to the load **complex grips, or specific specimen shape**
- mixed mode loading

Actuators

screw-driven

- twin screws on either side to ensure even loading
- do not endure cyclic loading well

servo-hydraulic

- require hydraulic power unit
- suitable for high loads and cyclic loading

pneumatic

• better for load control than displacement control

electromagnetic

- same operating principle as loudspeaker
- ideal for cyclic loading

piezoelectric

- precise small displacements
- also magnetostrictive etc.

inertial

mostly used for dynamic (impact) loading

quasi-static, dynamic, and cyclic loading

Course Content: learning from breaking things

• Load

- loadframes, actuators, and grips
- quasi-static, dynamic, and cyclic loading
- Measure
 - measurement of force, displacement, and strain
 - digital image correlation and other full-field measurement techniques
- Analyse
 - selected special challenges in mechanical testing (ask for yours!)
 - introduction to inverse problem methodologies in experimental mechanics

quasi-static loading

slowly applied load or displacement

- strain rates typically on the order of 10^{-3} s⁻¹ or lower
 - experiments take minutes or longer
- feedback loop load control or strain control
- fracture or serrated flow may still be dynamic

dynamic loading

impact loading

- e.g. Charpy toughness test
 - can have instrumented hammer to get load displacement curve
- tests take on the order of 1 second

shock loading

- pressure pulse from shock propagating in fluid
 - generated by explosives or diaphragm rupture
 - difficult to calibrate the variation of pressure in time and space

high rate loading

- Kolsky bar / split Hopkinson bar
 - elastically transmitted wave from impact on a long rod
 - load shaping requires a sacrificial insert that will deform with that load profile
 - load and deformation deduced from transmitted and reflected waves

ballistic loading

- impact of a projectile with a larger target generates elastic shocks in target
- in hypervelocity impact the projectile is supersonic also in the target

cyclic loading / fatigue

necessary due to fatigue behaviour of metals

- may be problematic for the testing machine for the same reason
- rotating axle in bending does not cause fatigue in machine

programmable cyclic or spectrum loading

• simplest form is sinusoidal between minimum and maximum

