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ON THE CONTACT OF ELASTIC SOLIDS

(JourTialfur die reine und angewandte Matlumatilc, 92, pp. 156-171, 1881.)

Ix the theory of elasticity the causes of the deformatioDS are

assumed to be partly forces acting throughout the volume of

the body, partly pressures appHed to its surface. For both

classes of forces it may happen that they become infinitely

great in one or more infiinitely small portions of the body, but

so that the integrals of the forces taken throughout these

elements remain finite. If about the singular point we describe

a closed surface of small dimensions compared to the whole

body, but very large in comparison with the element in which

the forces act, the deformations outside and inside this surface

may be treated independently of each other. Outside, the

deformations depend upon the shape of the whole body, the

finite integrals of the force-components at the singular point,

and the distribution of the remaining forces ; inside, they

depend only upon the distribution of the forces acting inside

the element. The pressures and deformations inside the sur-

face are infinitely great in comparison with those outside.

In what follows we shall treat of a case which is one of

the class referred to above, and which is of practical interest,^

namely, the case of two elastic isotropic bodies which touch

each other over a very small part of their surface and exert

upon each other a finite pressure, distributed over the common
area of contact. The surfaces in contact are imagined as

perfectly smooth, i.e. we assume that only a normal pressure

1 Cf. Winkler, Die Lehre von der Elasticitdt uiid Festigkeit, vol. i. p. 43 (Prag.

1867) ; and Graahqf, Theorie der Elasticitdt uiid Festigkeit, pp. 49-54 (Berlin,

1878).
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acts between the parts in contact. The portion of the surface

which durinc; deformation is common to the two bodies we

shall call the surface of pressure, its boundary the curve of

pressure. The questions which from the nature of the case

first demand an answer are these: What surface is it, of

which the surface of pressure forms an infinitesimal part ?'

What is the form and what is the absolute magnitude of the

curve of pressure ? How is the normal pressure' distributed

over the surface of pressure ? It is of importance to determine

the maximum pressure occurring in the bodies when they are

pressed together, since this determines whether the bodies will

be without permanent deformation ; lastly, it is of interest to

know how much the bodies approach each other under the

influence of a given total pressure.

We are given the two elastic constants of each of the

bodies which touch, the form and relative position of their

surfaces near the point of contact, and the total pressure. We
shall choose our units so that the surface of pressure may be

finite. Our reasoning will then extend to all finite space

;

the full dimensions of the bodies in contact we must imagine

as infinite.

In the first place we shall suppose that the two surfaces

are brought into mathematical contact, so that the common
normal is parallel to the direction of the pressure which one

body is to exert on the other. The common tangent plane

is taken as the plane xy, the normal as axis of e, in a rect-

angular rectilinear system of coordinates. The distance of

any point of either surface from the common tangent plane

will in the neighbourhood of the point of contact, i.e. through-

out all finite space, be represented by a homogeneous quad-

ratic function of x and y. Therefore the distance between

two corresponding points of the two surfaces will also be

represented by such a function. We shall turn the axes of x

and 7/ so that in the last-named function the term involving

xy is absent.

' In general the radii of curvature of the surface of a body in a state of strain

are only infinitesimally altered ; but in our .particular case they are altered by
finite amounts, and in this lies the justification of the present question. For
instance, when two equal spheres of the same material touch each other, the

surface of pressure forms part of a plane, i.e. o{ a surface which is different in

character from both of the surfaces in contact.



148 CONTACT OF ELASTIC SOLIDS v

Then we may write the equations of the two surfaces

sj, = Aia;^ + Gxy + ^^\ z^ = A^x^ + Cxij + B^,

and we have for the distance between corresponding points

of the two surfaces s^ — j;^ = Aa;^ + By^ where A = Ai-A„
B = Bj — Bj, and A, B, C are all infinitesimal.^ From the

meaning of the quantity z^ — z^ it follows that A and B have

the like sign, which we shall take positive. This is equivalent

to choosing the positive 2-axis to fall inside the body to

which the index 1 refers.

Further, we imagine in each of the two bodies a rect-

angular rectilinear system of axes, rigidly connected at

infinity with the corresponding body, which system of axes

coincides with the previously chosen system of xyz during the

mathematical contact of the two surfaces. When a pressure

acts on the bodies these systems of coordinates will be shifted

parallel to the axis of z relatively to one another ; and their

relative motion will be the same in amount as the distance by

which those parts of the bodies approach each other which

are at an infinite distance from the point of contact. The

plane z= in each of these systems is infinitely near to the

part of the surface of the corresponding body which is at a

finite distance, and therefore may itself be considered as the

surface, and the direction of the a-axis as the direction of the

normal to this surface.

Let f, rj, f be the component displacements parallel to the

axes of x,y,z; let Y,. denote the component parallel to 0«/ of

the pressure on a plane element whose normal is parallel to

<dx, exerted by the portion of the body for which x has

smaller values on the portion for which x has larger values,

and let a similar notation be used for the remaining com-

^ Let pji, pj2 ^s the reciprocals of the principal radii of curvature of the sur-

face of the first body, reckoned positive when the corresponding ce'nti-es of

curvature lie inside this body ; similarly let Psj, pga ^^ ^^ principal curvatures
of the surface of the second body ; lastly, let a be the angle which the planes

of the cxurvatures pu and p2i make with each other. Then

2(A + B) = pu + pi3+ P21+ P22,

2(A - B) = V'(pii - pi„)2+ 2(pii - pi2)(p2i
-

P22) cos 2u + (p2i - p^K

If we introduce an auxiliary angle t by the equation cos t= (A - B)/(A + B), then

2A= (pu + P12+ P21 + P22) cos^^, 2B = (pu + P12+ P21 + P22) sin^^.
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ponents of pressiu-e ; lastly let Kj^j and K^Oi^ be the respective

coefficients of elasticity of the bodies. Generally, where the

quantities refer to either body, we shall omit the indices. We
then have the following conditions for equilibrium:

—

1. Inside each body we must have

0=v'^ + (l + 2^& O = v''7 + (Hh20&
ox oy

oz 9a; dy oz

and in 1 we have to put 6^ for 6, in 2 6^ for 9.

2. At the boundaries the following conditions must hold :

—

(a) At infinity ^, /;, f vanish, for our systems of co-

ordinates are rigidly connected with the bodies there.

(6) For a = 0, i.e. at the surface of the bodies, the tan-

gential stresses which are perpendicular to the «-axis must

vanish, or

---KM)-' ---KS40-'
(c) For « = 0, outside a certain portion of this plane, viz.

outside the surface of pressure, the normal stress also must

vanish, or

Z,= 2K('|+0.) = O.

Inside that part

^21 - 2z2-

We do not know the distribution of pressure over that part,

but instead we have a condition for the displacement ^ over it.

(d) For if a denote the relative displacement of the two

systems of coordinates to which we refer the displacements,

the distance between corresponding points of the two surfaces

after deformation is Ax^+ ~Ry^ + ^j^
— ^^ — a, and since this

distance vanishes inside the surface of pressure we have

fj - ^2 = * ~ ^*^ - B«/2 = a - »j + «2.

(e) To the conditions enumerated we must add the con-

^ [Kirclilioff's notation, ilechanilc, p. 121.

—

Tr.]
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dition that inside the surface of pressure Z^ is everywhere

positive, and the condition that outside the surface of pressure

fj
— ^^a — Ax^ — By^, otherwise the one body would overflow

into the other.

(/) . Lastly the integral / Z^ds, taken over the part of the

surface -which is bounded by the curve of pressure, must be

equal to the given total pressure, which we shall call p.

The particular form of the surface of the two bodies only

occurs in the bo\mdary condition (2 «!), apart from which

each of the bodies acts as if it were an infinitely extended

body occupying all space on one side of the plane 2=0, and

as if only normal pressures acted on this plane. We there-

fore consider more closely the equilibrium of such a body.

Let P be a function which inside the body satisfies the

equation v^P = ; in particular, we shall regard P as the

potential of a distribution of electricity on the finite part of

the plane 2=0. Further let

i

n= -- +—^--ri\vdz-A,
K^K(l + 2^)\j J

z

where % is an infinitely great quantity, and J is a constant so

chosen as to make 11 finite. For this purpose J must be

equal to the natural logarithm of i multiplied by the total

charge of free electricity corresponding to the potential P.

From the definition of 11 it follows that

. 2(1 + 61)

Introducing the contraction 3- = „, „^. we put

an an an „„^

2
ap 2 ap

This system of displacements is easily seen to satisfy the
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differential equations given for ^, rj, ^, and the displacements

vanish at infinity. For the pressure components we find

dm
" dxdy

7- oTfi^'"
I

2(2 + 3ff) aP

ra^n api a^p

The last two formulae show that for the given system the

stress-components perpendicular to the 2-axis vanish through-

out the plane « = 0. We determine the displacement t, and

the normal pressure Z^ at the plane « = 0, and find

f=^P, Z,= -2|?.
oz

The density of the electricity producing the potential P is

— (l/27r)(9P/98), hence we have the following theorem. The
displacement f in the surface, which corresponds to the normal

pressure Z^, is equal to 5-/47r times the potential due to an

electrical density numerically equal to the pressure Z^.

We now consider again both bodies : we imagine the

electricity whose potential is P to be distributed over a finite

portion only of the plane 2 = 0; we make IIj and n„ equal to

the expressions derived from the given expression for 11 by

giving to the symbols K and the index 1 and 2, and put

^-_9n, ^__9n, .__9n,_



152 CONTACT OF ELASTIC SOLIDS V

whence we have for s =

8P c'P

Oz dz

/
This assumption satisfies the conditions (1), (2 a), and ('2 b)

according to the explanations given. Since dTjciz has on the

two sides of the plane s = values equal but of opposite sign,

and since it vanishes outside the electrically charged surface

whose potential is P, the conditions (2 c) also are fulfilled, pro-

vided the surface of pressure coincides with the electrically

charged surface. Prom the fact that P is continuous across

the plane z= 0, it follows that for s = 0, 5-2^1 + ^1^2 ~ 0- But

according to the condition (2 d) we have for the surface of

pressure, ?i
— ^2 = * ~ ^1 + ~2 j

^^re therefore

Apart from a constant which depends on the choice of the

system of coordinates, and need therefore not be considered, the

equation of the surface of pressure is 2 = a^ + fj = Sj + ?2) o^"

(5-1 + 3-2)2 = S-^Zi + 3-i22- Thus the surface of pressure is part

of a quadric surface lying between the undeformed positions of

the surfaces which touch each other ; and is most like the

boundary of the body having the greater coefficient of elasticity.

If the bodies are composed of the same material it is the

mean surface of the surfaces of the two bodies, since then

2z = Zi + z.T_.

We now make a definite assumption as to the distribution

of the electricity whose potential is P. Let it be distributed

over an ellipse whose semi-axes a and 6^coincide with the axes of

2,p I
%2 ^

X and y, with a density —^— / 1 — — — ^ , so that it can be

regarded as a charge which fills an infinitely flattened ellipsoid

with uniform volume density. Then

P = JZ. f /'l _ ^^ ^ _r^^=±=_
167rJ\ «' + X l" + \ \/x/(a' + A,)(62 + X)X'
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where u, the inferior limit of integration, is the positive root

of the cubic equation

„2

Inside the surface of pressure, which is bounded by the given

ellipse, we have u=Q, P = L — Ma;^ — Nj'^ ; where L, M, N
denote certain positive definite integrals. The condition (2 d)

is satisfied by choosing a and 6 so that

which is always possible. The unknown a which occurs in

the condition is then determined by the equation

(^i + .9-2)L = a.

It follows directly from the equation

that the first of the conditions (2 «) is satisfied.

To show that the second also is satisfied is to prove that

when 2=0 and x^ja? + y^lh^>l, (^^ + S-,)? > a - Ak^ - Byl

For this purpose we observe that here

P = L - Ma;' - 'Sf

iy h _ x" y" \ d\

and hence P > L — Mcc^ — 'Ny^, for the numerator of the ex-

pression under the sign of integration is negative throughout

the region considered. Multiplying by 5-^^ + 3-, we get the

inequality which was to be proved. Finally, a simple integra-

tion shows that the last condition ( 2 /) also is satisfied

;

therefore we have in the assumed expression for P and the

corresponding system |^, ??, f a solution which satisfies all the

conditions.
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The equations for the axes of the ellipse of pressin-e

written explicitly are

du IQtt

\/(a'' + uf(b'' + u)u ^j+^^ 3p

du B IGtt

or introducing the ratio k = ajh, and transforming,

dz iir

«'J v/(l + /^V/( 1 + z-") 3p ^^+\

'

dz iTT B

u

By division we obtain a transcendental equation for the

ratio k} This depends only on the ratio A : B, and it follows

at once, from the meaning we have attached to the forces and

displacements, that the ellipse of pressure is always more

elongated than the ellipses at which the distance between the

bodies is constant. As regards the absolute magnitude of the

surface of pressure for a given form of the surfaces it varies as

^ The solution of this equation and the evaluation of the integrals required

for the determination of a and 6 may be performed by the aid of Legendre's
tables without necessitating any new quadratures. The calculation, usually

somewhat laborious, may in most cases be avoided by the use of the following

small table, of which the arrangement is as follows. If we express A and B in

the equations for a and b in terms of the principal curvatures and the auxiliary

angle r introduced in a previous note, the solutions of these equations are

expressible in the form

^ 8(/)ll+ft2 + p2i+p22) V 8(/)ll+ Pi2 + p2i + p22)

where /i, v are transcendental functions of the angle t. The table gives the
values of these functions for ten values of the argument t expressed in degrees.

T
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the cube root of the total pressure and as the cube root of

the quantity 3-^ + 3-^. By the preceding tlie distance through

which the bodies approach each other under the action of the

given pressure is

Stt' a J v/(l+ /.-VXl+»2)'

If we perform the multiplication by 3-^ + 3^, a splits up into

two portions which have a special meaning. They denote the

distances through which the origin approaches the infinitely

distant portions of the respective bodies ; we may call them

the indentations which the respective bodies have undergone.

With a given form of the touching surfaces the distance of

approach varies as the pressure raised to the power ^ and

also as the same power of the quantity 3-^ + 3-^. When A and

B alter in magnitude while their ratio remains unchanged, the

dimensions of the surface of pressure vary inversely as the

cube roots of the absolute values of A and B, and the distance

of approach varies directly as these roots. When A and B
become infinite, the distance of approach becomes infinite

;

bodies which touch each other at sharp points penetrate into

each other.

In connection with this we shall determine what happens

to the element at the origin of our system of coordinates by I

finding the three displacements t^ , i?- , tt In the first
Ox oy dz

place we have at the origin

_ 2 aP_ 3p 1

K(l+ 26l) dz 2K{1 + 26)77 ab

d^_ 1 9P_ 3p 1^

dz~K{l-i-2e)dz 4K(l + 26l)7ra&'

Further, at the plane z =

an ^an
dx dy

n =—— vciz =—= Ych

.

E:(1 + 26)} 2K(1 + 26)]



156 CONTACT OF ELASTIC SOLIDS V

We see that in the said plane ^ and 77 are proportional to

bhe forces exerted by an infinitely long elliptic cylinder, which

stands on the surface of pressure and whose density increases

inwards, according to the law of increase of the pressure in the

surface of pressure. In general then, ^ and r) are given by

complicated functions ; but for points close to the axis they

can be easily calculated. Surrounding the axis we describe a

very thin cylindrical surface, similar to the whole cylinder

;

this [small] cylinder we may treat as homogeneous, and since

the part outside it has no action at points inside it, the com-

ponents of the forces in question, and therefore also ^ and r),

must be equal to a constant multiplied respectively by xja and

by yjh. Hence

Ox oy

On the other hand we have

d^ dr, S^ 3» 1

dx ' dy dz 4K(1 + 2e)ir ab

From these equations we find for the three quantities

which we sought

3? _ 3^ 1

dr)

4K(1 + 26l)7r
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softer metals, this transgression will at first consist in a lateral

deformation accompanied by a permanent compression ; so that

it will not result in an infinitely increasing disturbance of

equilibrium, but the surface of pressure will increase beyond

the calculated dimensions until the pressure per unit area is

sufficiently small to be sustained. It is more difficult to de-

termine what happens in the case of brittle bodies, as hard

steel, glass, crystals, in which a transgression of the elastic

limit occurs only through the formation of a rent or crack, i.e.

only under the influence of tensional forces. Such a crack

cannot start in the element considered above, which is com-

pressed in every direction ; and with otir present-day knowledge

of the tenacity of brittle bodies it is indeed impossible exactly

to determine in which element the conditions for the production

of a crack first occur >when the pressure is increased. I However,

a more detailed discussion shows this much, that in bodies

which in their elastic behaviour resemble glass or hard steel,

much the most intense tensions occur at the surface, and in

fact at the boundary of the surface of pressure. Such a dis-

cussion shows it to be probable that the first crack starts at

the ends of the smaller axis of the ellipse of pressure, and

proceeds perpendicularly to this axis along that ellipse.

The formula found become especially simple when both

the bodies which touch each other are spheres. In this case

the surface of pressure is part of a sphere. If p is the recip-

rocal of its radius, and if p^ and p^ ^"^^ ^^^ reciprocals of the

radii of the touching spheres, then we have the relation

(-9-J
-1- B-^p = 3-^p^ + 3-^p^ ; which for spheres of the same material

takes the simpler form 2p = p^ + p^. The curve of pressure is

a circle whose radius we shall call a. If we put

^2

then will

a +u u

^,Ift(i-^-'-V.
*'

ICttJ V a' + u uJ(a^j^u)J'.u

which may also be expressed in a form free of integrals.

We easily find for a, the radius of the circle of pressure,,

and for a, the distance through which the spheres approach



158 CONTACT OF ELASTIC SOLIDS V

each other, and also for the displacement ^ over the part of

the plane s = inside the circle of pressure :

—

\/l6(p, + p,)' 16a '

Outside the circle of pressure ^ is represented by a some-

what more complicated expression, involving an inverse tangent.

Very simple expressions may be got for ^ and r) at the plane

a = 0. For the compression at the plane « = we find

3p V a^ •

2K(l + 2^)7r

inside the circle of pressure ; outside it o- = 0. For the

pressure Z^ inside the circle of pressure we obtain

y _ip Va? — r'^
.

at the centre we have

7=^ y _v - 1 + 4^ ^P
^ 2-^0?' " ' 4(l + 2^)7ra^'

The formulae obtained may be directly applied to particular

cases. In most bodies 6 may with a sufficient approximation

be made equal to 1. Then K becomes ^ of the modulus of

elasticity ; 5- becomes equal to ^^- times the reciprocal of that

modulus ; in all bodies -9- is between three and four times this

reciprocal value. If, for instance, we press a glass lens of 100
metres radius with the weight of 1 kilogramme against a

plane glass plate (in which case the first Newton's ring would

have a radius of about 5-2 millimetres), we get a surface of

pressure which is part of a sphere of radius equal to 200
metres. The radius of the circle of pressure is 2 '6 7 millimetres

;

the distance of approach of the glass bodies amounts to only

7 1 millionths of a millimetre. The pressure Z^ at the centre

of the surface of pressure is 0"0669 kilogrammes per square

millimetre, and the perpendicular pressures X^ and Y have
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about -g- that value. As a second example, consider a number

of steel spheres pressed by their own weight against a rigid

horizontal plane. "We find that the radius of the circle of

pressure in millimetres is very approximately a— io\)

-^^-

Hence for spheres of radii
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closest contact, and which we shall call the surface of impact.

It follows that the elastic state of the two bodies near the

point of impact during the whole duration of impact is very

nearly the same as the state of equilibrium which would be

produced by the total pressure subsisting at any instant

between the two bodies, supposing it to act for a long time.

If then we determine the pressure between the two bodies by

means of the relation which we previously found to hold

between this pressure and the distance of approach along the

common normal of two bodies at rest, and also throughout the

volume of each body make use of the equations of motion of

elastic solids, we can trace the progress of the phenomenon

very exactly. We cannot in this way expect to obtain general

laws ; but we may obtain a number of such if we make the

further assumption that the time of impact is also large com=-

pared with the time taken by elastic waves to traverse the

impinging bodies from end to end. When this condition is

fulfilled, all parts of the impinging bodies, except those infinitely

close to the point of impact, will move as parts of rigid bodies
;

we shall show from our results that the condition in question

may be realised in the case of actual bodies.

We retain our system of axes of xyz. Let a be the

resolved part parallel to the axis of z of the distance of two

points one in each body, which are chosen so that their

distance from the surface of impact is small compared with

the dimensions of the bodies as a whole, but large compared

with the dimensions of the surface of impact ; and let a! denote

the differential coefl&cient of a with regard to the time. If

cZJ is the momentum lost in time At by one body and gained

by the other, then it follows from the theory of impact of

rigid bodies that dcJ = — k^dJ, where Jc^ is a quantity depending

only upon the masses of the impinging bodies, their principal

moments of inertia, and the situation of their principal axes of

inertia relatively to the normal at the point of impact.-' On

^ See Poisson, Traiti de m/canique, II. chap. vii. In the notation there
employed we have for the constant ki

. _ 1 (5 cos 7 - c cos /3)2 (c cos a - a cos 7)' {a cos /3 - 5 003 a)"

*i-M+ A + B
+

C

1 (y cos 7' -c' cos ;87 (c' cos 11' -a' cos 77 (g' cos /3' - 6' cos g'f
'*'M' A' B'

"*"

C
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the other hand, dJ is equal to the element of time dt, multi-

plied by the pressure which during that time acts between the

bodies. This is Ji\a\ where k„ is a constant to be determined

from what precedes, which constant depends only on the form

of the surfaces and the elastic properties quite close to the

point of impact. Hence dJ = k^a^dt and da = — JcJc.^ahU ;

integrating, and denoting by a^ the value of a' just before

impact, we find

a " — a g + ^JiJiM' — 0,

which equation expresses the principle of the conservation of

energy. When the bodies approach as closely as possible a

vanishes ; if a„^ denote the corresponding value of a, then
/ 5a'2\*

a„ = I — ) , and the simultaneous maximum pressure is

2}^i
= k^al^. Prom this we at once obtain the dimensions of

the surface of impact.

In order to deduce the variation of the phenomenon witlr

the time,, we integrate again and obtain

da

a

The upper limit is so chosen that t = at the instant of nearest

approach. For each value of the lower limit a, the double

sign of the radical gives two equal positive and negative values

of t. Hence a is an even and a' an odd function of t ; im-

mediately after impact the points of impact separate along

the normal with the same relative velocity with which they

approached each other before impact. And the same tran-

scendental function which represents the variation of a' between

its initial and final values, also represents the variations of all

the component velocities from their initial to their final values.

In the first place, the bodies touch when a = ; they

separate when a again = 0. Hence the duration of contact,

that is the time of impact, is

am 5

j v/aV - ^k,k,a^ V 1 6a/^/4 a\'

M. P. M
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.= [-^. = 1-4716.

Thus the time of impact may become infinite in various ways

without the time, with which it is to be compared, also

becoming infinite. In particular the time of impact becomes

infinite when the initial relative velocity of the impinging

bodies is infinitely small ; so that whatever be the other

circumstances of any given impact, provided the velocities

are chosen small enough, the given developments will have

any accuracy desired. In every case this accuracy will be

the same as that of the so-called laws of impact of perfectly

elastic bodies for the given case. For the direct impact of

two spheres of equal radius E and of the same material of

density j the constants k^ and k.2 are

/• - ^ k-^ F-

hence in the particular case of two equal steel spheres of

radius E, taking the millimetre as unit of length, and the

weight of one kilogramme as unit of force, we have

log 7^1 = 8-78 -3 log E,

logi-2 = 4-03+1 log E.

Thus for two such spheres impinging with relative velocity v

:

the radius of the surface of impact . am,= 0'0020E#mm,
the time of impact . T=0-000024E»" *sec,

the total pressure at the instant of

nearest approach . . . ^^= 0-00025EVkg,
the simultaneous maximum pressure

at the centre of impact per unit

area . . . y^= 29'l'y%g/mml

For instance, when the radius of the spheres is 25 mm., the

velocity 10 mm/sec, then a,„=0-13 mm., T= 0-00038 sec,

/»^=2-47kg., y^= 73-0 kg/mm.^ For two steel spheres as

large as the earth, impinging with an initial velocity of 10
mm/sec, the duration of contact would be nearly 27 hours.
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ON THE CONTACT OF EIGID ELASTIC SOLIDS

AND ON HAKDNESS

{ Verhandlungen des Vereins zur Beforderung des Geweriefleisses, November 1882.)

When two elastic bodies are pressed together, they touch each

other not merely in a mathematical point, but over a small

but finite part of their surfaces, which part we shall call the

surface of pressure. The form and size of this surface and

the distribution of the stresses near it have been frequently

considered (Winkler, Zehre von der Elasticitcit und Festigkeit,

Prag. 1867, I. p. 43 ; Grashof, Theorie der Elasticitdt und
Festigkeit, Berlin, 1878, pp. 49-54); but hitherto the results

have either been approximate or have even involved unknown
empirical constants. Yet the problem is capable of exact

solution, and I have given the investigation of the problem in

vol. xcii. of the Journal filr reine und angewandte Mathematik,

p. 15 6.'' As some aspects of the subject are of considerable

technical interest, I may here treat it more fully, with an

addition concerning hardness. I shall first restate briefly the

proof of the fundamental formulae.

We first imagine the two bodies brought into mathematical

contact ; the common normal coincides with the line of action

of the pressure which the one body exerts upon the other.

In the common tangent plane we take rectangular rectilinear

axes of xy, the origia of which coincides with the point of

contact; the third perpendicular axis is that of z. We can

confine our attention to that part of each body which is very

close to the point of contact, since here the stresses are

extremely great compared with those occurring elsewhere, and

1 See V. p. 146.
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consequently depend only to the very smallest extent on the

forces applied to other parts of the bodies. Hence it is suffi-

cient to know the form of the surfaces infinitely near the point

of contact. To a first approximation, if we consider each

body separately, we may even suppose their surfaces to coin-

cide with the common tangent plane 2=0, and the common
normal to coincide with the axis of. z; to a second approxima-

tion, when we wish to consider the space between the bodies,

it is sufficient to retain only the quadratic terms in xy in the

development of the equations of the surfaces. The distance

between opposite points of the two surfaces then becomes a

homogeneous quadratic function of the x and y belonging to

the two points ; and we can turn our axes of x and y so that

from this function the term ia xy disappears. After com-

pleting this operation let the distance between the surfaces

be given by the equation c = Ax" + By'. A and B must of

necessity have the same sign, since e cannot vanish ; when we
construct the curves for which e has the same value, we obtain

a system of similar ellipses, whose centre is the origin. Our

problem now is to assign such a form to the surface of pressure

and such a system of displacements and stresses to its neigh-

bourhood, that (1) these displacements and stresses may satisfy

.the differential equations of equilibrium of elastic bodies, and

the stresses may vanish at a great distance from the surface of

pressure ; that (2) the tangential components of stress may
vanish all over both surfaces; that (3) at the surface the

normal pressure also may vanish outside the surface of pressure,

but inside it pressure and counterpressure may be equal

;

the integral of this pressure, taken over the whole surface of

pressure, must be equal to the total pressure p fixed before-

hand ; that, lastly (4) the distance between the surfaces, which

is altered by the displacements, may vanish in the surface of

pressure, and be greater than zero outside it. To express the

last condition more exactly, let fi, 171, fj be the displacements

parallel to the axes of x, y, z in the first body, ^2. Vi> ^2 those

in the second. In each let them be estimated relatively to

the undeformed parts of the bodies, which are at a distance

from the surface of pressure; and let a denote the distance

by which these parts are caused by the pressure to approach

each other. Then any two points of the two bodies, which
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have the same coordinates x, y, have approached each other

by a distance a — ^^ + ^o under the action of the pressure

;

this approach must in the surface of pressure neutralise the

original distance Ka? + 1 \y- Hence here we must have

^1 — ^2 = « ~ ^'^ ~ B?/^, whilst elsewhere over the surfaces

fi
— f2>a — ^y? — B?/^. All these conditions can be satisfied

only by one single system of displacements ; I shall give this

system, and prove that it satisfies all requirements.

As surface of pressure we take an ellipse, whose axes

coincide with those of the ellipses c = constant, but whose

shape is more elongated than theirs. We reserve the deter-

mination of the lengths of its semi-axes a and h until later.

First we define a function P by the equation

^^h^ii-i-A. y^ ^'\ _J^
1 6 TTj \ ((- -I- X V-^X \js/ (ft2 + X)lb-' + X)X'

where the lower limit of integration is the positive root of the

cubic equation

a? -{ u ly' + It to

The quantity lo is an elliptic coordinate of the point xye ; it

is constant over certain ellipsoids, which are confocal with

the ellipse of pressure, and vanishes at all points which are

infinitely close to the surface of pressure. The function P has

a simple meaning in the theory of potential. It is the poten-

tial of an infinitely flattened gravitating ellipsoid, which would

just fill the surface of pressure ; in that theory it is proved

that P satisfies the differential equation

92p 92p g2p

dir oij- dz

ISTow from this P we deduce two functions 11, one of which

refers to the one body, the second to the other, and we make
CO

n, = -— f«p— ^- fp&

n, = - —(zV -^

I
I'd:

' KX 1 + 26;
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Here K, ® denote the coefficients of elasticity in Kirchhoff's

notation. Young's modulus of elasticity is expressed in terms

of these coefficients by the equation

1 + 3©

The ratio between lateral contraction and longitudinal exten-

sion is

©
'^ ~

1 + 2@

For bodies like glass or steel, this ratio is nearly -^, or ©
nearly 1, and K is nearly f E. For slightly compressible

bodies the ratio is nearly ^ ; here then ® = oo , K = -^E. As

a matter of fact a particular combination of K and © will

play the principal part in our formulae, for which we shall

therefore introduce a special symbol. "We put

2(1+©)

k;(i + 2©)'

In bodies like glass, ^ = 4/3K= 32/9E ; in all bodies S- lies

between 3/E and 4/E, since © lies between and oo . In

regard to the II's we must note that calculated by the above

formulae they have infinite values ; but their differential co-

efficients, which alone concern us, are finite. It would only

be necessary to add to the II's infinite constants of suitable

magnitude to make them finite. By a simple differentiation,

remembering that v^P = 0, we find

2 3P „ 2 3P
V2TT t v^TT^^^'-

K,dz- ^^^'~ K,dz

We now assume the following expressions for the displace-

ments in the two bodies :

—
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2 dV
0-9 =

K2(l + 2e2) dz

In the first place, this system satisfies the equations of

equilibrium, for we have

and similar equations hold for fj, Vi> V2 > for the ^s we get the

same result, remembering that v^P = 0- For the tangential

stress components at the surface (2 = 0) we find, leaving out

the indices :—

•

- \dx dz) \dzdx dx ) ''" dxdz

Y^=_Kf?^ +if)._Kf2^+2^^U2.^^0,
\dz^dyj V 9y9« 3*7 32/9«

as the second condition requires.

It is more troublesome to prove that the third condition

is satisfied. We again omit indices, as the calculation applies

equally to both bodies. We have generally

^.r(^^ ^ \ (9'n 2(2 + 3© 8P

dz^ ) -^U^^ ^K(l + 2©)a8

32P 3P
= 2z -^ - 2-g^ ;

3P
therefore at the surface Z^ = — 2^ . Now, using the equa-

tion for w, we have generally

CO

ap 3j? r ^ ^

9P
. .

and therefore at the surface -^ vanishes, as it must do, and

with it Z^, at any rate outside the surface of pressure. In

the compressed surface, where m = 0, the expression takes the



168 ON HAKDNESS VI

form . 00 ; the ordinary procedure for the evaluation of

such an indeterminate form gives

dT Sp " dz

tliat is, since for ?t = we have

3P 3« / X- if

Here no quantity occurs wliich could be affected by an

index. Hence in the surface of pressure Z- is the same for

both bodies
;
pressure and counter-pressure are equal. Lastly,

the integral of Z_ over the sm-face of pressure is Spl^irah

times the volume of an ellipsoid whose semi-axes are 1, a, i;

i.e. it equals p, and therefore the total pressure has the

required value.

It remains to be shown that the fourth condition can be

satisfied by a suitable choice of the semi-axes a and h. For

this purpose we remark that

so that at the surface ^1=-^!? and ^2 = 5-2?. Since inside

the surface of pressure the lower limit m of the integral is

constantly zero, inside that surface P has the form P = L —
Ma;^ — 'Nf ; and therefore it is necessary so to determine a, i

and a that (3-^ + 3-^)^ = A, (S-^ + \)lii = B, (9-^ + \)L = a, so

as to satisfy the equation fj
—

f,
= a — Ax^ — By'', and this

determination is always possible. Written explicitly the

equations for a and b are

du A 16 TT

a

/

Jla'
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Finally, it is easily shown that the very essential in-

equality, which must be fulfilled outside the surface of

pressure, is actually satisfied ; but I omit the proof, since it

requires the repetition of complicated integrals.

Thus our formulse express the correct solution of the

proposed problem, and we may use them to answer the chief

questions which may be asked concerning the subject. It is

necessary to carry the evaluation of the quantities a and h a

step further; for the equations hitherto found for them cannot

straightway be solved, and in general not even the quantities

A and B are explicitly known. I assume that we are given the

four principal curvatures (reciprocals of the principal radii of

curvature) of the two surfaces, as well as the relative position

of their planes ; let the former be p^^ and p-^^ for the one

body, P21 and p.2.2 for the other, and let a> be the angle

between the planes of p^ and of p^^ . Let the p's be reckoned

positive when the corresponding centres of curvature lie

inside the body considered. Let our axes of xy be placed so

that the rc^-plane makes with the plane of pu the angle &>', so

far unknown. Then the equations of the surfaces are

2^1 = pij(x' cos co' + y sin w')^ + p-y^{y cos a! — x sin aJf,

2^2 = —
p2i{*^ cos (&)' — (u) + y sin iw' — &))}^

— p.2«\y cos {J — od) — x sin (w' — ro)}^.

The difference Sj — »2 gives the distance between the surfaces.

Putting it = Ax^ + By^, and equating coefficients of a;^, xy, y"^

on both sides, we obtain three equations for at', A and B
;

their solution gives for the angle m, which evidently de-

termines the position of the axes of the ellipse of pressure

relatively to the surfaces, the equation

^ o /
(^21-^22) sin 2(u

for A and B

3(A-B) =

Pii - P12 + (^21 - P22)COS 2a)'

2(A 4- B) = pii -I- P12 + P21 + ^22 >

J{pn - Puf + 2(pii - PuXpn - P22)cos 2&) + (P21
- Piif
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For the purpose of what follows it is convenient to

introduce an auxiliary angle r by the equation

A-B
COST

A+ B'

and then

2A = (pn + Pi2 + P21 + /'22)sin^2 '

T
2B = (pii + P12 + P21 + p22)cos^2

We shall introduce these values into the equations for

a and h, and at the same time transform the integrals

occurring there by putting in the first u = bh^, in the second

u = aV. Denoting the ratio h/a by k we get

CO

1 f
^^

_^ PU + P12 + P21 + P22 gjj^2;^

d^ _^ P1I+P12 + P2I + P22 j.Qg2^

Dividing the one equation by the other we get a new one,

involving only k and t, so that Z; is a function of t alone

;

and the same is true of the integrals occurring in the equa-

tions. If we solve them by writing

V8(/P„ + /3i2-

3

-J

+ ^2)

+ P21 + P22)

'

KPll + P12+ P2I+ P22)'

then /x and v depend only on t, that is on the ratio of the

axes of the ellipse e = constant. The integrals in question

may all be reduced to complete elliptic integrals of the first

species and their differential coefficients with respect to the
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modulus, and can therefore be found by means of Legendre's

tables without further quadratures. But the calculations are

wearisome, and I have therefore calculated the table given

below,^ in which are found the values of /i and v for ten

values of the argument t
;
presumably interpolation between

these values will always yield a sufficiently near approxima-

tion. We may sum up our results thus : The form of the

ellipse of pressure is conditioned solely by the form of the

ellipses e = constant. With a given shape its linear di-

mensions vary as the cube root of the pressure, inversely as

the cube root of the arithmetical mean of the curvatures, and

also directly as the cube root of the mean value of the elastic

coefficients -9- ; that is, very nearly as the cube root of the

mean value of the reciprocals of the moduli of elasticity. It

is to be noted that the area of the ellipse of pressure in-

creases, other things being equal, the more elongated its form.

If we imagine that of two bodies touching each other one be

rotated about the common normal while the total pressure is

kept the same, then the area of the surface of pressure will be

a maximum and the mean pressure per unit area a minimum
in that position in which the ratio of the axes of the ellipse

of pressure differs most from 1.

Our next inquiry concerns the indentations experienced

by the bodies and the distance by which they approach each

other in consequence of the pressure ; the latter we called a

and found its value to be {S-^ + B-^Ij. Transforming the

integral L a little, we get

Zp 5i -I- S-. ch

J{i+k'z'){i+z'y

The distances by which the origin approaches the distant

T
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parts of the bodies may be suitably denoted as indentations.

Their values are easily found by multiplying by S-^ + 3-2 and

thus separating a into two portions. Substituting for a its

value, we see that a involves a numerical factor which depends

on the form of the ellipse of pressure ; and that for a given value

of this factor a varies as the ^ power of the pressure, as the

I power of the mean value of the coefficients 3-, and as the cube

root of the mean value of the curvatures. If one or more of these

curvatures become infinitely great, then distance of approach

and indentations become infinitely great—a result sufficiently

illustrated by the penetrating action of points and edges.

We assumed the surface of pressure to be so small that

the deformed surfaces could be represented by quadric sur-

faces throughout a region large compared with the surface of

pressure. Such an assumption can no longer be made after

application of the pressure ; in fact outside the surface of

pressure the surface can only be represented by a complicated

function. But we find that inside the surface of pressure the

surface remains a quadric surface to the same approximation

as before. Here we have fj
— ^2 ^ ^^ ~^^^ ""B?/" = a — ;i+,ro,

again ^^ = rS-^P, ^^ = 3-2?, or ^^ : ^2 = -^! •'^2' ^^^ lastly, the

equation of the deformed surface is » = «i + ?i = -2 + ^'2 ; whence

neglecting a constant, we easily deduce (3-^+ 32)s = 3^i + ^iZ^.

This equation expresses what we wished to demonstrate ; it

also shows that the common surface after deformation lies

between the two original surfaces, and most nearly resembles

the body which has the greater modulus of elasticity. When
spheres are in contact the surface of pressure also forms part

of a sphere : when cylinders touch with axes crossed it forms

part of a hyperbolic paraboloid.

So far we have spoken of the changes of form, now we

will consider the stresses. We have already found for the

normal pressure in the compressed surface

7 = ^' /1 *'_^'

This increases from the periphery to the centre, as do the

ordinates of an ellipsoid constructed on the ellipse of pressure

;

it vanishes at the edge, and at the centre is one and a half

times as great as it would be if the total pressure were
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equally distributed over the surface of pressure. Besides Z,

the remaining two principal tensions at the origin can be

expressed in a finite form. It may be sufficient to state that

they are also pressures of the same order of magnitude as Z^,

and are of such intensity that, provided the material is at

all compressible, it will suffer compression in all three direc-

tions. When the curve of pressure is a circle, these forces

are to Z, in the ratio of (1 + 4@)/2(l + 26) : 1 ; for glass

about as 5/6 : 1. The distribution of stress inside depends

not only on the form of the ellipse of pressure, but also

essentially on the elastic coefficient © ; so that it may be

entirely different in the two bodies which are in contact.

When we compare the stresses in the same material for the

same form but different sizes of the ellipse of pressure and

different total pressures, we see that the stresses at points

similarly situated with regard to the surface of pressm'e are

proportional to each other. To get the pressures for one case

at given points we must multiply the pressures at similarly

situated points in the other case by the ratio of the total

pressures, and divide by the ratio of the compressed areas.

If we suppose two given bodies in contact and only the

pressure between them to vary, the deformation of the

material varies as the cube root of this total pressm-e.

It is desirable to obtain a clear view of the distribution

of stress in the interior ; but the formulae are far too compli-

cated to allow of our doing this directly. But by considering

the stresses near the s-axis and near the surface we can form

a rough notion of this distribution. The result may be

expressed by the following description and the accompanying

diagram (Fig. 19), which represents a section through the axis of
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z and an axis of the ellipse of pressure ; arrow-heads pointing

towards each other denote a tension, those pointing away from

each other a pressure. The figure relates to the case in which

@ = 1. The portion ABDC of the body, which originally

formed an elevation above the surface of pressure, is now
pressed into the body like a wedge ; hence the pressure is

transmitted not only in the direct line AE, but also, though

with less intensity, in the inclined directions AF and AG.

The consequence is that the element is also powerfully com-

pressed laterally ; while the parts at F and G are pressed apart

and the intervening portions stretched. Hence at A on the

element of area perpendicular to the sc-axis there is pressure,

which diminishes inwards, and changes to a tension which

rapidly attains a maximum, and then, with increasing distance,

diminishes to zero. Since the part near A is also laterally

compressed, all points of the surface must approach the origin,

and must therefore give rise to stretching in a line with the

origin. In fact the pressure which acts at A parallel to the

axis of X already changes to a tension inside the surface of

pressure as we proceed along the a;-axis ; it attains a maximum
near its boundary and then diminishes to zero. Calculation

shows that for ® = 1 this tension is much greater than that

in the interior. As regards the third principal pressure which

acts perpendicular to the plane of the diagram, it of course

behaves like the one parallel to the ;e-axis; at the surface it

is a pressure, since here all points approach the origin. If

the material is incompressible the diagram is simplified, for

since the parts near A do not approach each other, the tensions

at the surface disappear.

We shall briefly mention the simplifications occurring in

the formulae, when the bodies in contact are spheres, or are

cylinders which touch along a generating line. In the first

case we have simply k= fi = v = 1, pu= pi2 = pi, Pa. = P22 = Pi >

hence

V l&{p^ + p,)
' 16«

The formulEe for the case of cylinders in contact are not

got so directly. Here the major semi-axis a of the ellipse

becomes infinitely great ; we must also make the total pressure
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p infinite, if the pressure per unit length of the cylinder is

to be finite. We then have in the second of equations (I)

B = -2-(/3j + p^. Further, we may neglect u compared with

a?, take a outside the sign of integration, and put for the

indeterminate quantity^/a = co /co an arbitrary finite constant,

say -|-p' ; then, as we shall see directly, p' is the pressure per

unit length of the cylinder. The integration of the equation

can now be performed, and gives

V -rrip^ + p,)

For the pressure Z^ we find

and it is easy to see that p' has the meaning stated. The

distance of approach a, according to our general formula, be-

comes logarithmically infinite. This means that it depends

not merely on what happens at the place of contact, but also

on the shape of the body as a whole ; and thus its determina-

tion no longer forms part of the problem we are dealing with.

I shall now describe some experiments that I have per-

formed with a view to comparing the formulae obtained with

experience
;
partly that I may give a proof of the reliability

of the consequences deduced, and their applicability to actual

circumstances, and partly to serve as an example of their

application. The experiments were performed in such a way
that the bodies used were pressed together by a horizontal

one-armed lever. From its free end were suspended the

weights which determined the pressure, and to it the one body

was fastened close to the fulcrum. The other body, which

formed the basis of support, was covered by the thinnest

possible layer of lamp-black, which was intended to record the

form of the surface of pressure. If the experiment succeeded,

the lampblack was not rubbed away, but only squeezed flat

;

in transmitted light the places of action of the pressure could

hardly be detected; but in reflected light they showed as

small brilliant circles or ellipses, which could be measured

fairly accurately by the microscope. The following numbers
are the means of from 5 to 8 measurements.
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I first examined whether the dimensions of the surface of

pressure increased as the cube root of the pressure. Tij this

end a glass lens of 28"0 mm. radius was fastene'd to the lever;

the small arm of the lever measured 114'0 mm., the large one

930 mm. The basis of support was a plane glass plate ; the

Young's modulus was determined for a bar of the same glass

and found to be 6201 kg/mm". According to Wertheim,

Poisson's ratio for glass is 0-32,whence © = -|,K = 2349kg/mm,^

and 3-= 0005790 mmY^^g- Hence our formula gives for the

diameter of the circle of pressure in mm., d= "3 6 5 Op*, where

p is measm-ed in kilogrammes weight. In the following

table the first row gives in kilogrammes the weight suspended

from the long arm of the lever, the second the measm-ed

diameter of the surface of pressure in turns of the micrometer

screw of pitch 0'2737 mm. Lastly, the third row gives the
3 _

quotient d ' \/p, which should, according to the preceding, be

a constant.

p
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tions, divide the major axes by the function jj, belonging to

the inclination used and the minor axes by the corresponding

function v, the quotient of all these divisions must be one and

the same constant, namely, the quantity 2{Sp3-/8p)^. The

following table gives in the first column the inclination a in

degrees, in the next two the values of 2 a and 2 6 as measured

in parts of the scale of the micrometer eye-piece, of which

96 equal one millimetre, and in the last two the quotients 2a/yu,

and 2&/i' :

—
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so as not to exceed the elastic limits. All these causes together
preclude our obtaining any but very imperfect curves of pressure,

and in measuring these there is room for discretion. I obtained

values which were always of the order of magnitude of those

calculated, but were too uncertain to be of use in accurately

testing the theory. However, the numbers given show con-

clusively that our formula are in no sense speculations, and

so will justify the application now to be made of them. The
object of this is to gain a clearer notion and an exact measure

of that property of bodies which we call hardness.

The hardness of a body is usually defined as the resist-

ance it opposes to the penetration of points and edges into it.

Mineralogists are satisfied in recognising in it a merely com-

parative property ; they call one body harder than another

when it scratches the other. The condition that a series of

bodies may be arranged in order of hardness according to this

definition is that, if A scratches B and B scratches C, then A
should scratch C and not vice versd; further, if a point of A
scratches a plane plate of B, then a point of B should not

penetrate into a plane of A. The necessity of the concurrence

of these presuppositions is not directly manifest. Although

experience has justified them, the method cannot give a

quantitative determination of hardness of any value. Several

attempts have been made to find one. Muschenbroek measured

hardness by the number of blows on a chisel which were

necessary to cut through a small bar of given dimensions of

the material to be examined. About the year 1850 Crace-

Calvert and Johnson measured hardness by the weight which

was necessary to drive a blunt steel cone with a plane end

1'25 mm. in diameter to a depth of 3 "5 mm. into the given

material in half an horn-. According to a book published in

1865,^ Hugueny measured the same property by the weight

necessary to drive a perfectly determinate point 0"1 mm. deep

into the material. More recent attempts at a definition I

have not met with. To all these attempts we may urge the

following objections : (1) The measure obtained is not only not

absolute, since a harder body is essential for the determination,

but it is also entirely dependent on a point selected at random.
From the results obtained we can draw no conclusions at all

^ F. Hugueny, Rechcrchcs cxperimentales sur la dureti des corps.
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as to the force necessary to drive in anotlier point. (2) Since

finite and permanent changes of form are employed, elastic

after-effects, which have nothing to do with hardness, enter

into the results of measurement to a degree quite beyond

estimation. This is shown only too plainly by the introduc-

tion of the time into the definition of Grace -Calvert and

Johnson, and it is therefore doubtful whether the hardness of

bodies thus measured is always in the order of the ordinary

scale. (3) We cannot maintain that hardness thus measured

is a property of the bodies in their original state (although

without doubt it is dependent upon that state). For in the

position in the experiment the point already rests upon per-

manently stretched or compressed layers of the body.

I shall now try to substitute for these another definition,

against which the same objections cannot be urged. In the

first place I look upon the strength of a material as determined,

not by forces producing certain permanent deformations, but

by the greatest forces which can act without producing de-

viations from perfect elasticity, to a certain predetermined

accuracy of measurement. Since the substance after the action

and removal of such forces returns to its original state, the

strength thus defined is a quantity really relating to the original

substance, which we cannot say is true for any other definition.

The most general problem of the strength of isotropic bodies

would clearly consist in answering the question—Within what

limits may the principal stresses X^, Yj^, Z^ in any element lie

so that the limit of elasticity may not be exceeded ? If we
represent X^,, Y^,, Z^ as rectangular rectilinear coordinates of a

point, then in this system there will be for every material a

certain surface, closed or in part extending to infinity, round

the origin, which represents the limit of elasticity ; those values

of X^., Yj,, Z^ which correspond to internal points can be borne,

the others not so. In the first place it is clear that if we
knew this surface or the corresponding function -»|r (X^,, Y^,,

Z^) = for the given material, we could answer all the

questions to the solution of which hardness is to lead us. For

suppose a point of given form and given material pressed

against a second body. According to what precedes we know
all the stresses occurring in the body ; we need therefore only

see whether amongst them there is one corresponding to a
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point outside the surface yfr (X^, Y^^, ZJ = 0, to be enabled to

tell whether a permanent deformation will ensue and, if so, in

which of the two bodies. But so far there has not even been

an attempt made to determine that surface. We only know
isolated points of it : thus the points of section by the positive

axes correspond to resistance to compression ; those by the

negative axes to tenacity ; other points to resistance to torsion.

In general we may say that to each point of the surface of

strength corresponds a particular kind of strength of material.

As long as the whole of the surface is not known to us, we

shall let a definite discoverable point of the surface correspond

to hardness, and be satisfied with finding out its ])Osition.

This object we arttain by the following definition,

—

Hardness

is the strength of a body relative to the kind of deformation

which corresponds to contact ivith a circular surfrax of pressure.

And we get an absolute measure of the hardness if we decide

that

—

The hardness of a body is to be measured by the normal

2}ressure per unit area ivhich must act at 'the centre of a circular

surface of pressure in order that in some point of the body the

stress may just reach the limit consistent with perfect elasticity.

To justify this definition we must show (1) that the neglected

circumstances are without effect
; (2) that the order .into

which it brings bodies according to hardness coincides with

the common scale of hardness. To prove the first point,

suppose a body of material A in contact with one of material

B, and a second body made of A in contact with one made of

C. The form of the surfaces may be arbitrary near the point

of contact, but we assume that the surface of pressure is

circular, and that B and C are harder or as hard as A. Then

we may simultaneously allow the total pressures at both con-

tacts to increase from zero, so that the normal pressure at the

centre of the circle of pressure may be the same in both cases.

We know that then the same system of stresses occurs in both

cases, therefore the elastic limit will first be exceeded at the

same time and at points similarly situated with respect to

the surface ( if pressure. We should from both cases get the

same value for the ha-rdness, and this hardness would cor-

respond to the same point of the surface of strength. It is

obvious that the elements in which the elastic limit is first

exceeded may have very different positions relatively to the
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sui'face of pressure in different materials, and that the positions

of the points of hardness in the surface of strength may be

very dissimilar. "We have to remark that the second body

which was used to determine the hardness of A might have

been of the same material A ; we therefore do not require a

second material at all to determine the hardness of a given

one. This circumstance justifies us in designating the above

as an absolute measurement. To prove the second point,

suppose two bodies of different materials pressed together ; let

the surface of pressure be circular ; let the hardness, defined as

above, be for one body H, for the second softer one li. If now

we increase the pressure between them until the normal

pressure at the origin just exceeds h, the body of hardness li

will experience a permanent indentation, whilst the other one

is nowhere strained beyond its elastic limit ; by moving one

body over the other with a suitable pressure we can in the

former produce a series of permanent indentations, whilst the

latter remains intact. If the latter body have a sharp point

we can describe the process as a scratching of the softer by

the harder body, and thus our scale of hardness agrees with

the mineralogical one. It is true that our theory does not

say whether the same holds good for all contacts, for which

the compressed surface is elliptical ; but this silence is justifi-

able. It is easy to see that just as hardness has been defined

by reference to a circular surface of pressure, so it could have

been defined l)y assuming for it any definite ellipticity. The

hardnesses thus diversely defined wiU. show slight nimierical

variations. Xow the order of the bodies in the different

scales of hardness is either the same, or it is not. In the first

ease, our definition agrees generally with the mineralogical one;

In the second case, the fault lies with the mineralogical

definition, since it cannot then give a definite scale of hardness

at all. It is indeed probable that the deviations from one

another of the variously defined hardnesses would be found

only very small ; so that with a slight sacrifice of accuracy we
might omit the limitation to a circular surface of pressure

both in the above and in what follows. Experiments alone

can decide with certainty.

Xow let H be the hardness of a body which is in contact

with another of hardness greater than H. Then by help of
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this value wo can make this assertion, that all contacts with a

circular surface (if pressure for which

or for which

can he borne, and only these.

The force which is just sullicient to drive a, pohit with

spherical end into the plane surface of a softer body, is pro-

portional to the cube of the liardness ol' this latter body, to

the square of the radius of curvature of the cud of the i)oint,

and also to the square of the mean of the coefficients^ Inr the

two bodies. To l)rinn' this assertion into better accord with

the usual determinations of hardness we might be tempted

to measure the latter not by th(( normal iireKM\u'e itself, l)uL

rather by its cube. Apart i'rom the I'aet that the analogy

thus produced would ))e fictitious (for the ionxi necessary to

drive one and the same point into dilferent bodies wouhl not

even then be proportionate to the hardness of the bodies), thi.s

proceeding would be irrational, since it would roiiiove hardness

from its place in the series ol' strengths of matiuial.

Though (lur deductions rest on results which are satis-

factorily verified by exjierience, still they themselves stand much

in need of experimental verification. For it might be that

actual bodies correspond very slightly with the assumptions of

homogeneity whicli we have nia,de our basis. Indeed, it is

sufldciently well known that the conditions as to strength near

the surface, with which we are licre concerned, arc quite different

from those inside the bodies. 1 liave made only a few i^.\i)eri-

ments on glass. In glass and all similar bodies the first trans-

gressiiiu beyond the elastic limit shows itself as a circular crack

which arises in the surlacc at the edge ol' the conqiressed surface,

and is pr(ipa,gated inwards ali)Ug a surface conical outwards when

the pressure inerca,ses. 'When the pressure inerc^ases still

further, a second crack encircles the first and .siniiliirly pro-

pagates itself inwards; then a third ai)pears, and ko on, the

phenomenon naturally becoming more and mon^ irregular.
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From the pressures necessary to produce the first crack

under given circumstances, as well as from the size of this

crack, we get the hardness of the glass. Thus experiments in

which I pressed a hard steel lens against mirror glass gave the

value 130 to 140 kg/mm^ for the hardness of the latter.

From the phenomena accompanying the impact of two glass

spheres, I estimated the hardness at 150 ; whilst a much
larger value, 180 to 200, was deduced from the cracks pro-

duced in pressing together two thin glass bars with natural

surfaces. These differences may in part be due to the defici-

encies of the methods of experimenting (since the same method
gave rise to considerable variations in the various results)

;

but in part they are undoubtedly caused by want of homogeneity

and by differences in the value of the surface-strength. If

variations as large as the above are found to be the rule, then

of course the numerical results drawn from our theory lose

their meaning; even then the considerations advanced above

afford us an estimate of the value which is to be attributed to

exact measurements of hardness.


