
ECON-C4200 - Econometrics II: Capstone
Lecture 5: Limited dependent variable models

Otto Toivanen
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Learning outcomes
• At the end of lectures 5 & 6, you

1 understand what a Limited Dependent Variable (LDV) is

2 what a Discrete choice model is

3 what one can and cannot identify with a discrete choice model

4 what a Linear Probability Model (LPM) is

5 how to estimate a LPM

6 how to interpret the parameters of a LPM

7 how to make a discrete choice model consistent with probability
theory

8 what a likelihood function is

9 what Probit and Logit models are and how to estimate them

10 what marginal effects are and how to calculate them
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What is a LDV?

• It is a variable that can take on only restricted values.

1 The share of income spent on item j is between zero and one

2 The number of products one buys is a non-negative integer.

3 A firm either invests in R&D or it does not
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Discrete choice

• Choice is discrete if the set of alternatives is limited (= you can count
the alternative choices).

• Discrete choice is an example of LDV models; the class of LDV
models is much wider, but we concentrate on discrete choice.

• How do we model decisions in economics?

• Utility maximization.

• How to do this when choices discrete (cannot differentiate...)?
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Discrete choice

• Example: buying a product.

• Denote utility from buying U.

• Allow U to vary with characteristics of the individual: U = U(X ).

• Price same for everybody: p.

• Note: we are discussing the simplest discrete choice models where
there are two options. The models generalize to (much) more
complicated settings.
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Discrete choice

• Utility from buying (assuming ”quasilinear” preferences - preferences
are linear in the numeraire good):

U(X )− p (1)

• What is the utility from not buying?

• Hard to know, may very across individuals.

• Let’s normalize to 0 → we identify differences in utility (we have an
example of this later).
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Discrete choice

• How does utility change if individual j buys the product?

[U(Xj)− p]− 0 = U(Xj)− p (2)

• When does j buy? If and only if

U(Xj)− p > 0 (3)
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Discrete choice

• Denote ”buy” → Y = 1

• Denote ”don’t buy” → Y = 0

Y = 1⇔ U(Xj)− p > 0 (4)
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Discrete choice

• How to relate this to an econometric model?

• Let’s introduce an error term.

U(Xj) = β0 + β1Xj + εj (5)
Y = 1⇔ β0 + β1Xj + εj − p > 0 (6)

Notice that in our model where p same for everybody, it ”goes into” the
constant term.
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Discrete choice

• Interpretation:

E[Yj |Xj ] = β0 + β1Xj = expected utility for consumer j from buying
the good.

E[Yj |Xj ] = β0 + β1Xj = probability of individual j buying the good.
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Choice of vertical integration

• Yes / no → 0 / 1 (or the other way round).

• Example Gil, R. (2015). Does vertical integration decrease prices?
evidence from the paramount antitrust case of 1948. American
Economic Journal: Economic Policy, 7(2), 162–91

• Question: Should movie studios own cinemas?

• Variable: VI Ever = 1 in Gil’s paper if cinema i vertically
integrated, 0 otherwise.

• Let’s take a cross-section of the 1st year of each theatre.

• We concentrate on the 1st year as then the courts did not (yet)
restrict VI.
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How to choose VI?

• Let’s assume

πVI
i = α0 + α1sizei + εVI

i (7)
πnoVI

i = γ0 + γ1sizei + εnoVI
i (8)

• A theatre is VI iff it is profitable, i.e.,

πVI
i − πnoVI

i ≥ 0

.
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How to choose VI?

α0 + α1sizei + εVI
i − (γ0 + γ1sizei + εnoVI

i ) ≥ 0 (9)
(α0 − γ0) + (α1 − γ1)× sizei + (εVI

i − εnoVI
i ) ≥ 0 (10)

β0 + β1sizei + εi ≥ 0 (11)

• NOTE: we can measure the difference in profits (utility), not the
level.
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Descriptive statistics

Stata code
1 t a b s t a t v i e v e r c a p a c i t y 1 0 0 0 , s t a t ( mean sd min max n )
2 s c a t t e r v i e v e r c a p a c i t y 1 0 0 0 i f c a p a c i t y 1 0 0 0 < 6 , ///
3 x t i t l e ( ” Capac i ty , 000 s e a t s ” ) ///
4 y t i t l e ( ” V e r t i c a l i n t e g r a t i o n = 1” ) ///
5 note ( ”x−a x i s c e n s o r e d at 6 000 s e a t s ” ) ///
6 g r a p h r e g i o n ( c o l o r ( wh i t e ) ) b g c o l o r ( wh i t e )
7
8 g r a p h e x p o r t ” s c a t t e r g i l . pd f ” , r e p l a c e
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Descriptive statistics

1

                              
       N         393       393
     max           1        23
     min           0      .115
     p90           1     3.172
     p75           1       2.2
     p50           0       1.4
     p25           0        .8
     p10           0      .485
      sd     .496404  1.638655
    mean    .4351145  1.735972
                              
   stats     vi_ever  cap~1000

. tabstat vi_ever capacity_1000, stat(mean sd p10 p25 p50 p75 p90 min max n)
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Descriptive statistics

2

                 0.0000
capacit~1000     0.4206   1.0000 
              
              
     vi_ever     1.0000 
                                
                vi_ever cap~1000

. pwcorr vi_ever capacity_1000, sig

Toivanen ECON-C4200 Lecture 5 16 / 30



Descriptive statistics

3
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How to estimate an LDV model I

• Linear regression → Linear Probability Model (LPM).

• Works...

• What is the interpretation of the regression function?
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How to estimate an LDV model I

4

                                                                               
        _cons      .295862    .075513     3.92   0.000     .1473997    .4443243
capacity_1000     .0802159   .0443814     1.81   0.071    -.0070401    .1674718
                                                                               
      vi_ever        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                              Robust
                                                                               

                                                Root MSE          =      .4793
                                                R-squared         =     0.0701
                                                Prob > F          =     0.0715
                                                F(1, 391)         =       3.27
Linear regression                               Number of obs     =        393

. regr vi_ever capacity_1000, robust
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Descriptive statistics

Stata code
1 twoway s c a t t e r v i e v e r c a p a c i t y 1 0 0 0 i f c a p a c i t y 1 0 0 0 < 6 | | ///
2 l f i t v i e v e r c a p a c i t y 1 0 0 0 i f c a p a c i t y 1 0 0 0 < 6 , ///
3 x t i t l e ( ” Capac i ty , 000 s e a t s ” ) ///
4 y t i t l e ( ” V e r t i c a l i n t e g r a t i o n = 1” ) ///
5 note ( ”x−a x i s c e n s o r e d at 6 000 s e a t s ” ) ///
6 g r a p h r e g i o n ( c o l o r ( wh i t e ) ) b g c o l o r ( wh i t e )
7
8 g r a p h e x p o r t ” s c a t t e r g i l 2 . pdf ” , r e p l a c e
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How to estimate an LDV model I
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What features does LPM have?

1 Good: Coefficients are marginal effects = ∂Y /∂X (derivatives).

2 ”Bad: Predicted probabilities” may be < 0 and/or > 1.

3 To take into account: Error terms are heteroscedastic by design (→
use robust se).

• Does all this matter? Depends what you want to do.

• In (very) large data sets, LPM is just fine if your interest is in the
marginal effects only.
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Taking the probability seriously

• If the dependent variable is 0/1, then the model produces a
probability.

• Probabilities are by definition in the support [0, 1].

• What functional form would yield a mapping (”match”) from X to Y
that could be interpreted as a probability?

• Answer: any function that yields a prediction between 0 and 1.
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Taking the probability seriously

• What would be such a function? Answer: Cumulative density
functions.

• Think of the normal distribution, denoted φ(z).

• But keep in mind that any cdf would work.

• We are going to discuss some popular choices in the next lecture.
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Stata simulation data

Stata code
1 s e t obs 100000
2 gen z = invnorm ( r u n i f o r m ( ) )
3 /∗ NOTE: a l t e r n a t i v e
4 gen z = rnorma l ( ) ∗/
5 k d e n s i t y z , ///
6 g r a p h r e g i o n ( c o l o r ( wh i t e ) ) b g c o l o r ( wh i t e )
7
8 d i s t p l o t z , y l i n e ( 0 . 5 ) x l i n e (0 ) /// // d i s t p l o t from s s c
9 g r a p h r e g i o n ( c o l o r ( wh i t e ) ) b g c o l o r ( wh i t e )
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Stata simulation data

6

0
.1

.2
.3

.4
D

en
si

ty

-5 0 5
z

kernel = epanechnikov, bandwidth = 0.0900

Kernel density estimate

Toivanen ECON-C4200 Lecture 5 26 / 30



Stata simulation data
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Taking the probability seriously

• If Y was continuous and between zero and one, we would write

Pr(Y = y |X = x) = φ(β0 + β1x).

• But Y is discrete and also,

• where’s the error term?

• Write Y = 1⇔ β0 + β1X + ε ≥ 0.

• It then follows that Y = 0⇔ β0 + β1X + ε < 0.

• Notice how we have now divided all possible RHS values into those
that deliver Y = 0 and those that deliver Y = 1.
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Taking the probability seriously

• Find the lowest value of εi = εi for which β0 + β1Xi + εi ≥ 0 holds.

εi = −(β0 + β1Xi ).

Pr(Y = 1|X = x) =
∫∞
−(β0+β1x) φ(ε)dε.

= 1− Φ(−β0 − β1Xi ) = Φ(β0 + β1Xi ).

• The last equality follows from the fact that the normal distribution is
symmetric (= what it looks like for ε < 0 is the mirror image of what
it looks like for ε ≥ 0).

• Notice that we have now produced a probability that varies from
theatre/individual to theatre/individual, depending on the value of Xi .

• Also notice that nothing in our derivation rested on us assuming ε is
normally distributed.
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Back to VI...

• We observe 1, ....,N theaters that either are or are not VI.

• Being VI means Y = 1 and β0 + β1x + ε > 0.

• Pr(Y = 1|X = x) = Φ(β0 + β1x).

• Pr(Y = 0|X = x) = 1− Φ(β0 + β1x).
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